Protein-centric omics integration analysis identifies candidate plasma proteins for multiple autoimmune diseases.

IF 3.8 2区 生物学 Q2 GENETICS & HEREDITY
Yingxuan Chen, Shuai Liu, Weiming Gong, Ping Guo, Fuzhong Xue, Xiang Zhou, Shukang Wang, Zhongshang Yuan
{"title":"Protein-centric omics integration analysis identifies candidate plasma proteins for multiple autoimmune diseases.","authors":"Yingxuan Chen, Shuai Liu, Weiming Gong, Ping Guo, Fuzhong Xue, Xiang Zhou, Shukang Wang, Zhongshang Yuan","doi":"10.1007/s00439-023-02627-0","DOIUrl":null,"url":null,"abstract":"<p><p>It remains challenging to translate the findings from genome-wide association studies (GWAS) of autoimmune diseases (AIDs) into interventional targets, presumably due to the lack of knowledge on how the GWAS risk variants contribute to AIDs. In addition, current immunomodulatory drugs for AIDs are broad in action rather than disease-specific. We performed a comprehensive protein-centric omics integration analysis to identify AIDs-associated plasma proteins through integrating protein quantitative trait loci datasets of plasma protein (1348 proteins and 7213 individuals) and totally ten large-scale GWAS summary statistics of AIDs under a cutting-edge systematic analytic framework. Specifically, we initially screened out the protein-AID associations using proteome-wide association study (PWAS), followed by enrichment analysis to reveal the underlying biological processes and pathways. Then, we performed both Mendelian randomization (MR) and colocalization analyses to further identify protein-AID pairs with putatively causal relationships. We finally prioritized the potential drug targets for AIDs. A total of 174 protein-AID associations were identified by PWAS. AIDs-associated plasma proteins were significantly enriched in immune-related biological process and pathways, such as inflammatory response (P = 3.96 × 10<sup>-10</sup>). MR analysis further identified 97 protein-AID pairs with potential causal relationships, among which 21 pairs were highly supported by colocalization analysis (PP.H4 > 0.75), 10 of 21 were the newly discovered pairs and not reported in previous GWAS analyses. Further explorations showed that four proteins (TLR3, FCGR2A, IL23R, TCN1) have corresponding drugs, and 17 proteins have druggability. These findings will help us to further understand the biological mechanism of AIDs and highlight the potential of these proteins to develop as therapeutic targets for AIDs.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-023-02627-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

It remains challenging to translate the findings from genome-wide association studies (GWAS) of autoimmune diseases (AIDs) into interventional targets, presumably due to the lack of knowledge on how the GWAS risk variants contribute to AIDs. In addition, current immunomodulatory drugs for AIDs are broad in action rather than disease-specific. We performed a comprehensive protein-centric omics integration analysis to identify AIDs-associated plasma proteins through integrating protein quantitative trait loci datasets of plasma protein (1348 proteins and 7213 individuals) and totally ten large-scale GWAS summary statistics of AIDs under a cutting-edge systematic analytic framework. Specifically, we initially screened out the protein-AID associations using proteome-wide association study (PWAS), followed by enrichment analysis to reveal the underlying biological processes and pathways. Then, we performed both Mendelian randomization (MR) and colocalization analyses to further identify protein-AID pairs with putatively causal relationships. We finally prioritized the potential drug targets for AIDs. A total of 174 protein-AID associations were identified by PWAS. AIDs-associated plasma proteins were significantly enriched in immune-related biological process and pathways, such as inflammatory response (P = 3.96 × 10-10). MR analysis further identified 97 protein-AID pairs with potential causal relationships, among which 21 pairs were highly supported by colocalization analysis (PP.H4 > 0.75), 10 of 21 were the newly discovered pairs and not reported in previous GWAS analyses. Further explorations showed that four proteins (TLR3, FCGR2A, IL23R, TCN1) have corresponding drugs, and 17 proteins have druggability. These findings will help us to further understand the biological mechanism of AIDs and highlight the potential of these proteins to develop as therapeutic targets for AIDs.

以蛋白质为中心的全息集成分析确定了多种自身免疫性疾病的候选血浆蛋白。
将自身免疫性疾病(AIDs)的全基因组关联研究(GWAS)结果转化为干预目标仍具有挑战性,这可能是由于缺乏对 GWAS 风险变异如何导致 AIDs 的了解。此外,目前治疗自身免疫性疾病的免疫调节药物作用广泛,而不是针对特定疾病。我们进行了一项以蛋白质为中心的综合全息分析,通过整合血浆蛋白的蛋白质定量性状位点数据集(1348个蛋白质和7213个个体)以及在一个前沿的系统分析框架下的十个大规模AIDs GWAS汇总统计数据,确定了与AIDs相关的血浆蛋白。具体来说,我们首先利用全蛋白质组关联研究(PWAS)筛选出蛋白质与艾滋病的关联,然后进行富集分析以揭示潜在的生物学过程和通路。然后,我们进行了孟德尔随机化(MR)和共定位分析,以进一步确定具有推定因果关系的蛋白质-AID 对。最后,我们对潜在的艾滋病药物靶点进行了优先排序。通过PWAS共鉴定出174种蛋白质-AID关联。AIDs相关血浆蛋白明显富集于免疫相关的生物过程和通路,如炎症反应(P = 3.96 × 10-10)。MR分析进一步确定了97对蛋白质-AID具有潜在的因果关系,其中21对通过共定位分析得到了高度支持(PP.H4 > 0.75),21对中有10对是新发现的,在以往的GWAS分析中未见报道。进一步的探索表明,有 4 个蛋白质(TLR3、FCGR2A、IL23R、TCN1)具有相应的药物,17 个蛋白质具有药物可药性。这些发现将有助于我们进一步了解艾滋病的生物学机制,并凸显了这些蛋白质发展成为艾滋病治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Genetics
Human Genetics 生物-遗传学
CiteScore
10.80
自引率
3.80%
发文量
94
审稿时长
1 months
期刊介绍: Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology. Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted. The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信