The 4-adic complexity of interleaved quaternary sequences of even period with optimal autocorrelation

Xiaoyan Jing, Zhefeng Xu
{"title":"The 4-adic complexity of interleaved quaternary sequences of even period with optimal autocorrelation","authors":"Xiaoyan Jing, Zhefeng Xu","doi":"10.1007/s12095-023-00690-y","DOIUrl":null,"url":null,"abstract":"<p>Su, Yang, Zhou, and Tang proposed several new classes of optimal autocorrelation interleaved quaternary sequences with period 2<i>n</i> from the twin-prime sequence pairs or GMW sequence pairs. In this paper, we determine the 4-adic complexity of these quaternary sequences by using the correlation function. Our results show that the 4-adic complexity of these quaternary sequences exceeds <span>\\(\\frac{2n-16}{6}\\)</span>, so that they are safe enough to resist the attack of the rational approximation algorithm.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-023-00690-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Su, Yang, Zhou, and Tang proposed several new classes of optimal autocorrelation interleaved quaternary sequences with period 2n from the twin-prime sequence pairs or GMW sequence pairs. In this paper, we determine the 4-adic complexity of these quaternary sequences by using the correlation function. Our results show that the 4-adic complexity of these quaternary sequences exceeds \(\frac{2n-16}{6}\), so that they are safe enough to resist the attack of the rational approximation algorithm.

具有最佳自相关性的偶数周期交错四元序列的四元复杂性
苏、杨、周和唐提出了几类新的周期为 2n 的最优自相关交错四元序列,它们来自孪生原点序列对或 GMW 序列对。本文利用相关函数确定了这些四元序列的四元复杂度。我们的结果表明,这些四元序列的四元复杂度超过了(\frac{2n-16}{6}\),因此它们足以安全地抵御有理逼近算法的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信