{"title":"Microstructural Evolution and Mechanical Properties of the Ti2AlNb Alloy with 3 wt.% W and 0.1 wt.% Y Obtained Using Powder Metallurgy Technique","authors":"Youyu Li","doi":"10.1007/s11106-023-00394-1","DOIUrl":null,"url":null,"abstract":"<p>TiAl intermediate compound is an important material for high-temperature applications due to its superior creep resistance and oxidation resistance. It is suitable for high-pressure compressors and low-pressure turbine blades of advanced military aircraft engines. TiAl intermediate compound is an excellent substitute for nickel-based superalloys, as it can decrease weight by 40% and greatly enhance aircraft thrust-to-weight ratio. In this paper, the microstructure evolution and the mechanical properties of Ti<sub>2</sub>AlNb alloy with a 3.0 wt.% W and 0.1 wt.% Y addition obtained by blending elemental ultrafine powders was investigated by XRD, SEM-EDS, and mechanical testing device. The findings show that high relative density of 0.9945, and the excellent mechanical properties of Ti<sub>2</sub>AlNb–3W–0.1Y alloy can be obtained through isothermal sintering for 3 hour in a furnace with controllable argon atmosphere flow of 200 mL/min at 1,500°C. The alloy’s tensile strength, yield strength, and elongation reach 1,030 MPa, 913 MPa, and 15.1% at 700°C, respectively. Meanwhile, the 3 wt.% of element W is added to the alloy to form (TiW)C as the second strengthening phase, which is uniformly distributed in the matrix of Ti<sub>2</sub>AlNb. The addition of Y element at 0.1 wt.% into the alloy can act as an effective scavenger of oxygen and inhibit the unsatisfactory precipitation of the brittle α<sub>2</sub>-phase in the Ti<sub>2</sub>AlNb alloy. Compared to the alloy without additions, the Ti<sub>2</sub>AlNb alloy with 3 wt.% W and 0.1 wt.% Y demonstrated 13.5% and 19.35% improvements in the fracture resistance at 25°C and 700°C, respectively. The alloy’s yield strength was increased as well. The evolution regularity of the main metallography is (Ti<sub>2</sub>AlNb–TiAl–Ti<sub>3</sub>Al) → (Ti<sub>2</sub>AlNb–Ti<sub>3</sub>Al) → (Ti<sub>2</sub>AlNb–Ti<sub>3</sub>Al–(TiW) C) during the isothermal sintering of Ti–22Al–25Nb–3W–0.1Y alloy at 1,500°C. This study provides technical guidance for the preparation of ultrafine TiAl-based alloy powder and high-temperature aerospace applications</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 5-6","pages":"302 - 311"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-023-00394-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
TiAl intermediate compound is an important material for high-temperature applications due to its superior creep resistance and oxidation resistance. It is suitable for high-pressure compressors and low-pressure turbine blades of advanced military aircraft engines. TiAl intermediate compound is an excellent substitute for nickel-based superalloys, as it can decrease weight by 40% and greatly enhance aircraft thrust-to-weight ratio. In this paper, the microstructure evolution and the mechanical properties of Ti2AlNb alloy with a 3.0 wt.% W and 0.1 wt.% Y addition obtained by blending elemental ultrafine powders was investigated by XRD, SEM-EDS, and mechanical testing device. The findings show that high relative density of 0.9945, and the excellent mechanical properties of Ti2AlNb–3W–0.1Y alloy can be obtained through isothermal sintering for 3 hour in a furnace with controllable argon atmosphere flow of 200 mL/min at 1,500°C. The alloy’s tensile strength, yield strength, and elongation reach 1,030 MPa, 913 MPa, and 15.1% at 700°C, respectively. Meanwhile, the 3 wt.% of element W is added to the alloy to form (TiW)C as the second strengthening phase, which is uniformly distributed in the matrix of Ti2AlNb. The addition of Y element at 0.1 wt.% into the alloy can act as an effective scavenger of oxygen and inhibit the unsatisfactory precipitation of the brittle α2-phase in the Ti2AlNb alloy. Compared to the alloy without additions, the Ti2AlNb alloy with 3 wt.% W and 0.1 wt.% Y demonstrated 13.5% and 19.35% improvements in the fracture resistance at 25°C and 700°C, respectively. The alloy’s yield strength was increased as well. The evolution regularity of the main metallography is (Ti2AlNb–TiAl–Ti3Al) → (Ti2AlNb–Ti3Al) → (Ti2AlNb–Ti3Al–(TiW) C) during the isothermal sintering of Ti–22Al–25Nb–3W–0.1Y alloy at 1,500°C. This study provides technical guidance for the preparation of ultrafine TiAl-based alloy powder and high-temperature aerospace applications
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.