{"title":"Hall’s universal group is a subgroup of the abstract commensurator of a free group","authors":"Edgar A. Bering, Daniel Studenmund","doi":"10.1007/s11856-023-2591-8","DOIUrl":null,"url":null,"abstract":"<p>P. Hall constructed a universal countable locally finite group <i>U</i>, determined up to isomorphism by two properties: every finite group <i>C</i> is a subgroup of <i>U</i>, and every embedding of <i>C</i> into <i>U</i> is conjugate in <i>U</i>. Every countable locally finite group is a subgroup of <i>U</i>. We prove that <i>U</i> is a subgroup of the abstract commensurator of a finite-rank nonabelian free group.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2591-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
P. Hall constructed a universal countable locally finite group U, determined up to isomorphism by two properties: every finite group C is a subgroup of U, and every embedding of C into U is conjugate in U. Every countable locally finite group is a subgroup of U. We prove that U is a subgroup of the abstract commensurator of a finite-rank nonabelian free group.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.