On parabolic subgroups of Artin groups

IF 0.8 2区 数学 Q2 MATHEMATICS
Philip Möller, Luis Paris, Olga Varghese
{"title":"On parabolic subgroups of Artin groups","authors":"Philip Möller, Luis Paris, Olga Varghese","doi":"10.1007/s11856-023-2597-2","DOIUrl":null,"url":null,"abstract":"<p>Given an Artin group <i>A</i><sub>Γ</sub>, a common strategy in the study of <i>A</i><sub>Γ</sub> is the reduction to parabolic subgroups whose defining graphs have small diameter, i.e., showing that <i>A</i><sub>Γ</sub> has a specific property if and only if all “small” parabolic subgroups of <i>A</i><sub>Γ</sub> have this property. Since “small” parabolic subgroups are the building blocks of <i>A</i><sub>Γ</sub> one needs to study their behavior, in particular their intersections. The conjecture we address here says that the class of parabolic subgroups of <i>A</i><sub>Γ</sub> is closed under intersection. Under the assumption that intersections of parabolic subgroups in complete Artin groups are parabolic, we show that the intersection of a complete parabolic subgroup with an arbitrary parabolic subgroup is parabolic. Further, we connect the intersection behavior of complete parabolic subgroups of <i>A</i><sub>Γ</sub> to fixed point properties and to automatic continuity of <i>A</i><sub>Γ</sub> using Bass–Serre theory and a generalization of the Deligne complex.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2597-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an Artin group AΓ, a common strategy in the study of AΓ is the reduction to parabolic subgroups whose defining graphs have small diameter, i.e., showing that AΓ has a specific property if and only if all “small” parabolic subgroups of AΓ have this property. Since “small” parabolic subgroups are the building blocks of AΓ one needs to study their behavior, in particular their intersections. The conjecture we address here says that the class of parabolic subgroups of AΓ is closed under intersection. Under the assumption that intersections of parabolic subgroups in complete Artin groups are parabolic, we show that the intersection of a complete parabolic subgroup with an arbitrary parabolic subgroup is parabolic. Further, we connect the intersection behavior of complete parabolic subgroups of AΓ to fixed point properties and to automatic continuity of AΓ using Bass–Serre theory and a generalization of the Deligne complex.

论阿尔丁群的抛物面子群
给定一个阿尔丁群 AΓ,研究 AΓ的常用策略是还原为定义图形具有小直径的抛物线子群,也就是说,当且仅当 AΓ的所有 "小 "抛物线子群都具有特定性质时,AΓ 才具有该性质。由于 "小 "抛物线子群是 AΓ 的组成部分,因此我们需要研究它们的行为,尤其是它们的交集。我们在此提出的猜想是,AΓ 的抛物面子群类在交集下是封闭的。在完全阿尔丁群中抛物线子群的交集是抛物线的假设下,我们证明了完全抛物线子群与任意抛物线子群的交集是抛物线的。此外,我们利用 Bass-Serre 理论和 Deligne 复数的广义,将 AΓ 的完整抛物面子群的交集行为与 AΓ 的定点性质和自动连续性联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信