Effective Hilbert’s irreducibility theorem for global fields

Pub Date : 2023-12-18 DOI:10.1007/s11856-023-2604-7
Marcelo Paredes, Román Sasyk
{"title":"Effective Hilbert’s irreducibility theorem for global fields","authors":"Marcelo Paredes, Román Sasyk","doi":"10.1007/s11856-023-2604-7","DOIUrl":null,"url":null,"abstract":"<p>We prove an effective form of Hilbert’s irreducibility theorem for polynomials over a global field <i>K</i>. More precisely, we give effective bounds for the number of specializations <span>\\(t \\in {{\\cal O}_K}\\)</span> that do not preserve the irreducibility or the Galois group of a given irreducible polynomial <i>F</i>(<i>T, Y</i>) ∈ <i>K</i>[<i>T, Y</i>]. The bounds are explicit in the height and degree of the polynomial <i>F</i>(<i>T, Y</i>), and are optimal in terms of the size of the parameter <span>\\(t \\in {{\\cal O}_K}\\)</span>. Our proofs deal with the function field and number field cases in a unified way.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2604-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove an effective form of Hilbert’s irreducibility theorem for polynomials over a global field K. More precisely, we give effective bounds for the number of specializations \(t \in {{\cal O}_K}\) that do not preserve the irreducibility or the Galois group of a given irreducible polynomial F(T, Y) ∈ K[T, Y]. The bounds are explicit in the height and degree of the polynomial F(T, Y), and are optimal in terms of the size of the parameter \(t \in {{\cal O}_K}\). Our proofs deal with the function field and number field cases in a unified way.

分享
查看原文
全域的有效希尔伯特不可还原性定理
更准确地说,我们给出了不保留给定不可还原多项式 F(T, Y)∈ K[T, Y] 的不可还原性或伽罗瓦群的特殊化 \(t \in {{\cal O}_K}\) 的有效边界。这些边界在多项式 F(T, Y) 的高和度上是明确的,在参数 \(t \in {{\cal O}_K}\) 的大小上是最优的。我们的证明以统一的方式处理了函数场和数场的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信