Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map

IF 0.8 2区 数学 Q2 MATHEMATICS
Pablo D. Carrasco, Federico Rodriguez-Hertz
{"title":"Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map","authors":"Pablo D. Carrasco, Federico Rodriguez-Hertz","doi":"10.1007/s11856-023-2588-3","DOIUrl":null,"url":null,"abstract":"<p>We consider the horocyclic flow corresponding to a (topologically mixing) Anosov flow or diffeomorphism, and establish the uniqueness of transverse quasi-invariant measures with Hölder Jacobians. In the same setting, we give a precise characterization of the equilibrium states of the hyperbolic system, showing that existence of a family of Radon measures on the horocyclic foliation such that any probability (invariant or not) having conditionals given by this family, necessarily is the unique equilibrium state of the system.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2588-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the horocyclic flow corresponding to a (topologically mixing) Anosov flow or diffeomorphism, and establish the uniqueness of transverse quasi-invariant measures with Hölder Jacobians. In the same setting, we give a precise characterization of the equilibrium states of the hyperbolic system, showing that existence of a family of Radon measures on the horocyclic foliation such that any probability (invariant or not) having conditionals given by this family, necessarily is the unique equilibrium state of the system.

对双曲流遍历理论的贡献:准不变度量的唯一遍历性和时间一映射的均衡状态
我们考虑了与阿诺索夫流或衍射(拓扑混合)相对应的角环流,并建立了具有赫尔德雅各比的横向准不变度量的唯一性。在同样的背景下,我们给出了双曲系统平衡态的精确特征,证明了在角环流叶面上存在一个 Radon 度量族,使得任何概率(不变或非不变),只要具有这个族给出的条件,就必然是系统的唯一平衡态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信