Simplifying matrix differential equations with general coefficients

Pub Date : 2023-12-18 DOI:10.1007/s11856-023-2599-0
{"title":"Simplifying matrix differential equations with general coefficients","authors":"","doi":"10.1007/s11856-023-2599-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We show that the <em>n × n</em> matrix differential equation <em>δ</em>(<em>Y</em>) = <em>AY</em> with <em>n</em><sup>2</sup> general coefficients cannot be simplified to an equation in less than <em>n</em> parameters by using gauge transformations whose coefficients are rational functions in the matrix entries of <em>A</em> and their derivatives. Our proof uses differential Galois theory and a differential analogue of essential dimension. We also bound the minimum number of parameters needed to describe some generic Picard–Vessiot extensions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2599-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the n × n matrix differential equation δ(Y) = AY with n2 general coefficients cannot be simplified to an equation in less than n parameters by using gauge transformations whose coefficients are rational functions in the matrix entries of A and their derivatives. Our proof uses differential Galois theory and a differential analogue of essential dimension. We also bound the minimum number of parameters needed to describe some generic Picard–Vessiot extensions.

分享
查看原文
简化具有一般系数的矩阵微分方程
摘要 我们证明了具有 n2 个一般系数的 n × n 矩阵微分方程 δ(Y) = AY 无法通过使用其系数为 A 的矩阵项中的有理函数及其导数的规整变换简化为小于 n 个参数的方程。我们的证明使用了微分伽罗瓦理论和本质维度的微分类似方法。我们还限定了描述某些一般皮卡-维西奥扩展所需的最小参数数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信