{"title":"Universal eigenvalue statistics for dynamically defined matrices","authors":"Arka Adhikari, Marius Lemm","doi":"10.1007/s11854-023-0314-z","DOIUrl":null,"url":null,"abstract":"<p>We consider dynamically defined Hermitian matrices generated from orbits of the doubling map. We prove that their spectra fall into the GUE universality class from random matrix theory.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0314-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider dynamically defined Hermitian matrices generated from orbits of the doubling map. We prove that their spectra fall into the GUE universality class from random matrix theory.