Random polynomials in several complex variables

Turgay Bayraktar, Thomas Bloom, Norm Levenberg
{"title":"Random polynomials in several complex variables","authors":"Turgay Bayraktar, Thomas Bloom, Norm Levenberg","doi":"10.1007/s11854-023-0316-x","DOIUrl":null,"url":null,"abstract":"<p>We generalize some previous results on random polynomials in several complex variables. A standard setting is to consider random polynomials <span>\\({H_n}(z): = \\sum\\nolimits_{j = 1}^{{m_n}} {{a_j}{p_j}} \\)</span> that are linear combinations of basis polynomials {<i>p</i><sub><i>j</i></sub>} with i.i.d. complex random variable coefficients {<i>a</i><sub><i>j</i></sub>} where {<i>p</i><sub><i>j</i></sub>} form an orthonormal basis for a Bernstein-Markov measure on a compact set <span>\\(K \\subset {\\mathbb{C}^d}\\)</span>. Here <i>m</i><sub><i>n</i></sub> is the dimension of <span>\\({{\\cal P}_n}\\)</span>, the holomorphic polynomials of degree at most <i>n</i> in <span>\\({\\mathbb{C}^d}\\)</span>. We consider more general bases {<i>p</i><sub><i>j</i></sub>}, which include, e.g., higher-dimensional generalizations of Fekete polynomials. Moreover we allow <span>\\({H_n}(z): = \\sum\\nolimits_{j = 1}^{{m_n}} {{a_{nj}}{p_{nj}}(z)} \\)</span>, i.e., we have an array of basis polynomials {<i>p</i><sub><i>j</i></sub>} and random coefficients {<i>a</i><sub><i>nj</i></sub>}. This always occurs in a weighted situation. We prove results on convergence in probability and on almost sure convergence of <span>\\({1 \\over n}\\log |{H_n}|\\)</span> in <span>\\(L_{{\\rm{loc}}}^1({\\mathbb{C}^d})\\)</span> to the (weighted) extremal plurisubharmonic function for <i>K</i>. We aim for weakest possible sufficient conditions on the random coefficients to guarantee convergence.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0316-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize some previous results on random polynomials in several complex variables. A standard setting is to consider random polynomials \({H_n}(z): = \sum\nolimits_{j = 1}^{{m_n}} {{a_j}{p_j}} \) that are linear combinations of basis polynomials {pj} with i.i.d. complex random variable coefficients {aj} where {pj} form an orthonormal basis for a Bernstein-Markov measure on a compact set \(K \subset {\mathbb{C}^d}\). Here mn is the dimension of \({{\cal P}_n}\), the holomorphic polynomials of degree at most n in \({\mathbb{C}^d}\). We consider more general bases {pj}, which include, e.g., higher-dimensional generalizations of Fekete polynomials. Moreover we allow \({H_n}(z): = \sum\nolimits_{j = 1}^{{m_n}} {{a_{nj}}{p_{nj}}(z)} \), i.e., we have an array of basis polynomials {pj} and random coefficients {anj}. This always occurs in a weighted situation. We prove results on convergence in probability and on almost sure convergence of \({1 \over n}\log |{H_n}|\) in \(L_{{\rm{loc}}}^1({\mathbb{C}^d})\) to the (weighted) extremal plurisubharmonic function for K. We aim for weakest possible sufficient conditions on the random coefficients to guarantee convergence.

多个复变数中的随机多项式
我们归纳了之前关于多个复变数中随机多项式的一些结果。标准的设置是考虑随机多项式 \({H_n}(z): = \sum\nolimits_{j = 1}^{{m_n}}{{a_j}{p_j}}\)是具有 i.i.d. 复随机变量系数 {aj} 的基多项式 {pj} 的线性组合,其中 {pj} 构成紧凑集 \(K \subset {mathbb{C}^d}\) 上伯恩斯坦-马尔科夫量度的正交基。这里 mn 是 \({{\cal P}_n}\) 的维度,即 \({\mathbb{C}^d}) 中最多 n 阶的全形多项式。我们考虑了更广义的基数 {pj},其中包括费克特多项式的高维广义化等。此外,我们允许 \({H_n}(z): = \sum\nolimits_{j = 1}^{{m_n}}{{a_{nj}}{p_{nj}}(z)} ),也就是说,我们有一个基础多项式 {pj} 和随机系数 {anj} 的数组。这种情况总是在加权情况下出现。我们证明了在\(L_{\rm{loc}}}^1({\mathbb{C}^d})\中\({1 \over n}\log |{H_n}||) 的概率收敛性和几乎确定的收敛性到 K 的(加权)极值全次谐函数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信