Existence of Sequences Satisfying Bilinear Type Recurrence Relations

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
A. A. Illarionov
{"title":"Existence of Sequences Satisfying Bilinear Type Recurrence Relations","authors":"A. A. Illarionov","doi":"10.1134/s0032946023020072","DOIUrl":null,"url":null,"abstract":"<p>We study sequences <span>\\(\\left\\{A_n\\right\\}_{n=-\\infty}^{+\\infty}\\)</span> of elements of an arbitrary field <span>\\(\\mathbb{F}\\)</span> that satisfy decompositions of the form\n</p><span>$$\n\\begin{aligned}\nA_{m+n} A_{m-n}&amp;=a_1(m) b_1(n)+a_2(m) b_2(n),\\\\ A_{m+n+1} A_{m-n}&amp;=\\widetilde a_1(m)\n\\widetilde b_1(n)+\\widetilde a_2(m) \\widetilde b_2(n),\n\\end{aligned}\n$$</span><p>\nwhere <span>\\(a_1,a_2,b_1,b_2\\colon \\mathbb{Z}\\to\\mathbb{F}\\)</span>. We prove some results concerning the existence and uniqueness of such sequences. The results are used to construct analogs of the Diffie–Hellman and ElGamal cryptographic algorithms. The discrete logarithm problem is considered in the group <span>\\((S,+)\\)</span>, where the set <span>\\(S\\)</span> consists of quadruples <span>\\(S(n)=(A_{n-1},A_n, A_{n+1}, A_{n+2})\\)</span>, <span>\\(n\\in\\mathbb{Z}\\)</span>, and <span>\\(S(n)+S(m)=S(n+m)\\)</span>.</p>","PeriodicalId":54581,"journal":{"name":"Problems of Information Transmission","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Information Transmission","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0032946023020072","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We study sequences \(\left\{A_n\right\}_{n=-\infty}^{+\infty}\) of elements of an arbitrary field \(\mathbb{F}\) that satisfy decompositions of the form

$$ \begin{aligned} A_{m+n} A_{m-n}&=a_1(m) b_1(n)+a_2(m) b_2(n),\\ A_{m+n+1} A_{m-n}&=\widetilde a_1(m) \widetilde b_1(n)+\widetilde a_2(m) \widetilde b_2(n), \end{aligned} $$

where \(a_1,a_2,b_1,b_2\colon \mathbb{Z}\to\mathbb{F}\). We prove some results concerning the existence and uniqueness of such sequences. The results are used to construct analogs of the Diffie–Hellman and ElGamal cryptographic algorithms. The discrete logarithm problem is considered in the group \((S,+)\), where the set \(S\) consists of quadruples \(S(n)=(A_{n-1},A_n, A_{n+1}, A_{n+2})\), \(n\in\mathbb{Z}\), and \(S(n)+S(m)=S(n+m)\).

满足双线性类型递推关系的序列的存在性
我们研究任意域元素的序列((left\{A_n\right\}_{n=-\infty}^{+\infty}\),这些序列满足$$begin{aligned}A_{m+n}的分解形式。A_{m-n}&=a_1(m) b_1(n)+a_2(m) b_2(n),\\A_{m+n+1}A{{m-n}&=\widetilde a_1(m)\widetilde b_1(n)+\widetilde a_2(m) \widetilde b_2(n),\end{aligned}$where\(a_1,a_2,b_1,b_2\colon \mathbb{Z}\to\mathbb{F}\).我们证明了关于这些序列的存在性和唯一性的一些结果。这些结果被用来构建 Diffie-Hellman 和 ElGamal 密码算法的类似算法。离散对数问题是在\((S,+)\)组中考虑的,其中集合\(S\)由四元组\(S(n)=(A_{n-1},A_n, A_{n+1}, A_{n+2})\)、\(n\in\mathbb{Z}\) 和\(S(n)+S(m)=S(n+m)\)组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Problems of Information Transmission
Problems of Information Transmission 工程技术-计算机:理论方法
CiteScore
2.00
自引率
25.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Problems of Information Transmission is of interest to researcher in all fields concerned with the research and development of communication systems. This quarterly journal features coverage of statistical information theory; coding theory and techniques; noisy channels; error detection and correction; signal detection, extraction, and analysis; analysis of communication networks; optimal processing and routing; the theory of random processes; and bionics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信