Anusua Basu, Mainak Deb, Arunita Das, Krishna Gopal Dhal
{"title":"Information Added U-Net with Sharp Block for Nucleus Segmentation of Histopathology Images","authors":"Anusua Basu, Mainak Deb, Arunita Das, Krishna Gopal Dhal","doi":"10.3103/S1060992X23040070","DOIUrl":null,"url":null,"abstract":"<p>Segmenting nuclei from histopathology images is a crucial step in the early identification and diagnosis of several diseases. Due to the complexity of histopathology images, accurate nucleus segmentation is not a simple operation. However, convolutional neural networks (CNNs) have recently been revealed to be a viable option. The well-known CNN model, namely the U-Net, demonstrated its image segmentation effectiveness in medical field. However, U-Net has several drawbacks, such as information loss after transmission through particular steps. Another significant one is the likelihood of feature mismatches in the encoder and decoder sub-networks in skip connection, which can lead to the fusing of semantically unrelated information and, as a consequence, fuzzy feature maps throughout the learning process. In order to solve these issues, an improved U-Net architecture called Information Added U-Net with Sharp Block (IASB-U-Net) has been proposed for nuclei segmentation from histopathology images. Information is added to the encoder-decoder path in the proposed model after each layer, and sharpening spatial filters are utilized in place of skip connections. The experimental study over a merged dataset demonstrates that the proposed IASB-U-Net produces competitive results when compared to established CNN models such as U-Net, Dense U-Net, SCPP Net, and LiverNet.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 4","pages":"318 - 330"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23040070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Segmenting nuclei from histopathology images is a crucial step in the early identification and diagnosis of several diseases. Due to the complexity of histopathology images, accurate nucleus segmentation is not a simple operation. However, convolutional neural networks (CNNs) have recently been revealed to be a viable option. The well-known CNN model, namely the U-Net, demonstrated its image segmentation effectiveness in medical field. However, U-Net has several drawbacks, such as information loss after transmission through particular steps. Another significant one is the likelihood of feature mismatches in the encoder and decoder sub-networks in skip connection, which can lead to the fusing of semantically unrelated information and, as a consequence, fuzzy feature maps throughout the learning process. In order to solve these issues, an improved U-Net architecture called Information Added U-Net with Sharp Block (IASB-U-Net) has been proposed for nuclei segmentation from histopathology images. Information is added to the encoder-decoder path in the proposed model after each layer, and sharpening spatial filters are utilized in place of skip connections. The experimental study over a merged dataset demonstrates that the proposed IASB-U-Net produces competitive results when compared to established CNN models such as U-Net, Dense U-Net, SCPP Net, and LiverNet.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.