Ampleness of Normal Bundles of Base Cycles in Flag Domains

IF 0.4 3区 数学 Q4 MATHEMATICS
Jaehyun Hong, Aeryeong Seo
{"title":"Ampleness of Normal Bundles of Base Cycles in Flag Domains","authors":"Jaehyun Hong, Aeryeong Seo","doi":"10.1007/s00031-023-09831-2","DOIUrl":null,"url":null,"abstract":"<p>Flag domains are open orbits of noncompact real forms of complex semisimple Lie groups acting on flag manifolds. To each flag domain one can associate a compact complex manifold called the base cycle. The ampleness of the normal bundle of the base cycle in a flag domain measures the concavity near the base cycle. In this paper we compute the ampleness of normal bundles of base cycles in flag domains in various cases, including flag domains in the full flag manifolds <i>G/B</i> when <i>G</i> is classical, and period domains parameterizing polarized Hodge structures with fixed Hodge numbers.</p>","PeriodicalId":49423,"journal":{"name":"Transformation Groups","volume":"74 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transformation Groups","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09831-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Flag domains are open orbits of noncompact real forms of complex semisimple Lie groups acting on flag manifolds. To each flag domain one can associate a compact complex manifold called the base cycle. The ampleness of the normal bundle of the base cycle in a flag domain measures the concavity near the base cycle. In this paper we compute the ampleness of normal bundles of base cycles in flag domains in various cases, including flag domains in the full flag manifolds G/B when G is classical, and period domains parameterizing polarized Hodge structures with fixed Hodge numbers.

Abstract Image

标志域中碱基循环正常束的放大率
旗域是作用于旗流形的复半简单李群的非紧凑实形式的开放轨道。每个旗域都可以关联一个称为基周期的紧凑复流形。旗域中基底周期法线束的振幅度量了基底周期附近的凹性。在本文中,我们计算了各种情况下旗域中基底周期法线束的振幅,包括 G 为经典时全旗流形 G/B 中的旗域,以及具有固定霍奇数的参数化极化霍奇结构的周期域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transformation Groups
Transformation Groups 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
100
审稿时长
9 months
期刊介绍: Transformation Groups will only accept research articles containing new results, complete Proofs, and an abstract. Topics include: Lie groups and Lie algebras; Lie transformation groups and holomorphic transformation groups; Algebraic groups; Invariant theory; Geometry and topology of homogeneous spaces; Discrete subgroups of Lie groups; Quantum groups and enveloping algebras; Group aspects of conformal field theory; Kac-Moody groups and algebras; Lie supergroups and superalgebras.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信