{"title":"Stable Submicron Aggregates of InP/ZnS Nanocrystals","authors":"A. V. Gadomska, S. A. Tovstun, M. G. Spirin","doi":"10.1134/s0018143923080118","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>High-temperature colloidal synthesis was used to produce InP nanocrystals with a mean diameter of 2 nm covered with a thin ZnS shell and organic ligands ~1 nm in length. The addition of acetonitrile to a toluene solution of these nanoparticles led to the formation of aggregates with a hydrodynamic diameter of 0.2 μm. The aggregates were stable at acetonitrile/toluene ratios from 1/1 to at least 14/1. A close distance between nanocrystals in the aggregates enabled interparticle Förster resonance energy transfer. The addition of an excess of toluene to a solution of these aggregates promoted their disaggregation into individual InP/ZnS nanocrystals.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"47 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143923080118","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature colloidal synthesis was used to produce InP nanocrystals with a mean diameter of 2 nm covered with a thin ZnS shell and organic ligands ~1 nm in length. The addition of acetonitrile to a toluene solution of these nanoparticles led to the formation of aggregates with a hydrodynamic diameter of 0.2 μm. The aggregates were stable at acetonitrile/toluene ratios from 1/1 to at least 14/1. A close distance between nanocrystals in the aggregates enabled interparticle Förster resonance energy transfer. The addition of an excess of toluene to a solution of these aggregates promoted their disaggregation into individual InP/ZnS nanocrystals.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.