Multiseasonal discrete-time risk model revisited

Pub Date : 2023-12-23 DOI:10.1007/s10986-023-09613-z
Andrius Grigutis, Jonas Jankauskas, Jonas Šiaulys
{"title":"Multiseasonal discrete-time risk model revisited","authors":"Andrius Grigutis, Jonas Jankauskas, Jonas Šiaulys","doi":"10.1007/s10986-023-09613-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, we set up the distribution function of <span>\\(\\mathcal{M}:={\\mathrm{sup}}_{n\\ge 1}{\\sum }_{i=1}^{n}\\left({X}_{i}-1\\right),\\)</span> where the random walk <span>\\({\\sum }_{i=1}^{n}{X}_{i},n\\in {\\mathbb{N}},\\)</span> is generated by <i>N</i> periodically occurring distributions, and the integer-valued and nonnegative random variables<i>X</i><sub>1</sub><i>,X</i><sub>2</sub><i>, . . .</i> are independent. The considered random walk generates a so-called multiseasonal discrete-time risk model, and a known distribution of random variable <i>M</i> enables us to calculate the ultimate time ruin or survival probability. Verifying obtained theoretical statements, we demonstrate several computational examples for survival probability <b>P</b>(<i>M &lt; u</i>) when <i>N</i> = 2<i>,</i> 3<i>,</i> or 10.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-023-09613-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we set up the distribution function of \(\mathcal{M}:={\mathrm{sup}}_{n\ge 1}{\sum }_{i=1}^{n}\left({X}_{i}-1\right),\) where the random walk \({\sum }_{i=1}^{n}{X}_{i},n\in {\mathbb{N}},\) is generated by N periodically occurring distributions, and the integer-valued and nonnegative random variablesX1,X2, . . . are independent. The considered random walk generates a so-called multiseasonal discrete-time risk model, and a known distribution of random variable M enables us to calculate the ultimate time ruin or survival probability. Verifying obtained theoretical statements, we demonstrate several computational examples for survival probability P(M < u) when N = 2, 3, or 10.

分享
查看原文
多季节离散时间风险模型再探讨
在这项工作中,我们设定了分布函数({M}:={\mathrm{sup}}_{n\ge 1}{\sum }_{i=1}^{n}\left({X}_{i}-1\right),\) 其中随机行走 \({\sum }_{i=1}^{n}{X}_{i},n\in {\mathbb{N}},\) 是由 N 个周期性出现的分布生成的,且整数值和非负随机变量 X1,X2, ....是独立的。所考虑的随机漫步生成了一个所谓的多季节离散时间风险模型,已知随机变量 M 的分布使我们能够计算最终时间毁灭或生存概率。为了验证所获得的理论陈述,我们演示了几个计算实例,说明当 N = 2、3 或 10 时的生存概率 P(M < u)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信