{"title":"Piezoelectric Energy Harvesting from Nonlinear Vibrations of Rotating System: Theoretical and Experimental Studies","authors":"Esmaeil Shirazi, Ali Asghar Jafari","doi":"10.1007/s40997-023-00731-0","DOIUrl":null,"url":null,"abstract":"<p>Energy harvesting has received considerable attention in the last two decades. Piezoelectric energy harvesting has been widely used in this field. This study investigates energy harvesting from vibration of two beams in a rotating piezoelectric nonlinear system. The presence of two factors, the nonlinear spring and the nonlinear strain, causes the system to be nonlinear, and consequently, it is possible to harvest energy over a wider range of frequencies. The coupled nonlinear differential equations of the system are derived using Lagrange electromechanical equations. Then, the approximate analytical solution of the multiple scales method and also the numerical solution of the equations using the Runge–Kutta method have been obtained. The resulting voltage and power are presented as a function of the rotating frequency, physical, and geometric parameters of the system. It is shown that the results of the perturbation solution are near to the numerical solution. Moreover, an experiment has been done on the constructed model to verify the theoretical results. The test results showed that the maximum difference between the power values in practice and theoretical results was less than 8%. Power in the range of 20–288.05 µW is produced in the frequency range of 1–3.1 Hz, which is more than the power required for wireless data transmission systems. Also the nonlinear energy harvester is superior to the linear type due to produce of more power in a wider bandwidth. The maximum efficiency of the real sample is 88%, and its output power density is 1.47–23.49 µW/cm<sup>3</sup> in the frequency range of 0.75–3.1 Hz.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":"9 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00731-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Energy harvesting has received considerable attention in the last two decades. Piezoelectric energy harvesting has been widely used in this field. This study investigates energy harvesting from vibration of two beams in a rotating piezoelectric nonlinear system. The presence of two factors, the nonlinear spring and the nonlinear strain, causes the system to be nonlinear, and consequently, it is possible to harvest energy over a wider range of frequencies. The coupled nonlinear differential equations of the system are derived using Lagrange electromechanical equations. Then, the approximate analytical solution of the multiple scales method and also the numerical solution of the equations using the Runge–Kutta method have been obtained. The resulting voltage and power are presented as a function of the rotating frequency, physical, and geometric parameters of the system. It is shown that the results of the perturbation solution are near to the numerical solution. Moreover, an experiment has been done on the constructed model to verify the theoretical results. The test results showed that the maximum difference between the power values in practice and theoretical results was less than 8%. Power in the range of 20–288.05 µW is produced in the frequency range of 1–3.1 Hz, which is more than the power required for wireless data transmission systems. Also the nonlinear energy harvester is superior to the linear type due to produce of more power in a wider bandwidth. The maximum efficiency of the real sample is 88%, and its output power density is 1.47–23.49 µW/cm3 in the frequency range of 0.75–3.1 Hz.
期刊介绍:
Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well
as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing.
The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.