PPFO: A Privacy Preservation-oriented Data Freshness Optimization Framework For Mobile Crowdsensing

Q1 Social Sciences
Yaoqi Yang, Bangning Zhang, D. Guo, Weizheng Wang, Xingwang Li, Chunqiang Hu
{"title":"PPFO: A Privacy Preservation-oriented Data Freshness Optimization Framework For Mobile Crowdsensing","authors":"Yaoqi Yang, Bangning Zhang, D. Guo, Weizheng Wang, Xingwang Li, Chunqiang Hu","doi":"10.1109/MCOMSTD.0005.2200077","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing (MCS) is an effective and timely sensing data collection manner. Privacy preservation and data freshness are the two biggest concerns for the robust MCS in the modern era. Data encryption and age of information (Aol) optimization technologies can help current MCS alleviate these two issues by processing a great volume of data messages with strong security and minimal delay. In this article, a secure and timely MCS framework (PPFO: privacy preservationori-ented data freshness optimization) is put forward to achieve the privacy preservation and data freshness optimization, that is, Aol minimization on the five-layer architecture. Particularly in the link and operation layers privacy preservation is realized by an encryption approach. Game theory methodology provides a solution to Aol optimization in the perception and transmission layers. Finally, the numerical results have shown the feasibility and effectiveness of the proposed framework.","PeriodicalId":36719,"journal":{"name":"IEEE Communications Standards Magazine","volume":"8 ","pages":"34-40"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Standards Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCOMSTD.0005.2200077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile crowdsensing (MCS) is an effective and timely sensing data collection manner. Privacy preservation and data freshness are the two biggest concerns for the robust MCS in the modern era. Data encryption and age of information (Aol) optimization technologies can help current MCS alleviate these two issues by processing a great volume of data messages with strong security and minimal delay. In this article, a secure and timely MCS framework (PPFO: privacy preservationori-ented data freshness optimization) is put forward to achieve the privacy preservation and data freshness optimization, that is, Aol minimization on the five-layer architecture. Particularly in the link and operation layers privacy preservation is realized by an encryption approach. Game theory methodology provides a solution to Aol optimization in the perception and transmission layers. Finally, the numerical results have shown the feasibility and effectiveness of the proposed framework.
PPFO:面向隐私保护的移动人群感知数据新鲜度优化框架
移动众感应(MCS)是一种有效而及时的感知数据收集方式。隐私保护和数据新鲜度是现代强大的移动群感系统最关心的两个问题。数据加密和信息时代(Aol)优化技术可以帮助当前的 MCS 缓解这两个问题,在处理大量数据信息时具有很强的安全性和最小的延迟。本文提出了一种安全、及时的移动通信系统框架(PPFO:privacy preservationori-ented data freshness optimization),在五层架构上实现隐私保护和数据新鲜度优化,即 Aol 最小化。特别是在链路层和操作层,通过加密方法实现了隐私保护。博弈论方法为感知层和传输层的 Aol 优化提供了解决方案。最后,数值结果表明了建议框架的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信