Improved reproducibility of metal halide perovskite solar cells via automated gas quenching

APL Energy Pub Date : 2023-12-01 DOI:10.1063/5.0174396
Samantha C. Kaczaral, Daniel A. Morales, Samuel W. Schreiber, Daniel Martinez, Ashley M. Conley, Randi Herath, G. Eperon, Joshua J. Choi, M. McGehee, David T. Moore
{"title":"Improved reproducibility of metal halide perovskite solar cells via automated gas quenching","authors":"Samantha C. Kaczaral, Daniel A. Morales, Samuel W. Schreiber, Daniel Martinez, Ashley M. Conley, Randi Herath, G. Eperon, Joshua J. Choi, M. McGehee, David T. Moore","doi":"10.1063/5.0174396","DOIUrl":null,"url":null,"abstract":"Achieving reproducible perovskite solar cell fabrication is crucial for making it a scalable technology. We demonstrate an automated gas quenching system to improve perovskite solar cell reproducibility at the lab-scale. We use in situ photoluminescence to monitor the perovskite film formation as a function of the atmosphere in the glove box and find that antisolvent quenching is more sensitive to lingering precursor solvents than the gas quenching method. We observe a better reproducibility with gas quenching than with antisolvent quenching because it maintains a more consistent atmosphere in the glove box. The automated gas quenching process leads to high performing devices that are reproducible both batch to batch and researcher to researcher. The insights into gas quenching film formation as a function of solvent atmosphere and quench velocity will help inform future studies on large scale fabrication systems.","PeriodicalId":486383,"journal":{"name":"APL Energy","volume":"476 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Energy","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1063/5.0174396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving reproducible perovskite solar cell fabrication is crucial for making it a scalable technology. We demonstrate an automated gas quenching system to improve perovskite solar cell reproducibility at the lab-scale. We use in situ photoluminescence to monitor the perovskite film formation as a function of the atmosphere in the glove box and find that antisolvent quenching is more sensitive to lingering precursor solvents than the gas quenching method. We observe a better reproducibility with gas quenching than with antisolvent quenching because it maintains a more consistent atmosphere in the glove box. The automated gas quenching process leads to high performing devices that are reproducible both batch to batch and researcher to researcher. The insights into gas quenching film formation as a function of solvent atmosphere and quench velocity will help inform future studies on large scale fabrication systems.
通过自动气体淬火提高金属卤化物包晶太阳能电池的再现性
实现可重现的过氧化物太阳能电池制造是使其成为可扩展技术的关键。我们展示了一种自动气体淬火系统,以提高实验室规模的包光体太阳能电池可重复性。我们利用原位光致发光来监测包晶体薄膜的形成与手套箱内气氛的关系,并发现与气体淬火法相比,反溶剂淬火法对残留的前驱体溶剂更为敏感。我们观察到气体淬火比反溶剂淬火的重现性更好,因为气体淬火能在手套箱中保持更稳定的气氛。自动气淬工艺可生产出高性能的设备,而且批次与批次之间以及研究人员与研究人员之间都具有可重复性。对气淬膜的形成与溶剂气氛和淬火速度的函数关系的深入了解将有助于为未来大规模制造系统的研究提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信