On a class of functional difference equations: explicit solutions, asymptotic behavior and applications

IF 0.9 3区 数学 Q2 MATHEMATICS
Nataliya Vasylyeva
{"title":"On a class of functional difference equations: explicit solutions, asymptotic behavior and applications","authors":"Nataliya Vasylyeva","doi":"10.1007/s00010-023-01022-4","DOIUrl":null,"url":null,"abstract":"<div><p>For <span>\\(\\nu \\in [0,1]\\)</span> and a complex parameter <span>\\(\\sigma ,\\)</span> <span>\\(Re\\, \\sigma &gt;0,\\)</span> we discuss a linear inhomogeneous functional difference equation with variable coefficients on a complex plane <span>\\(z\\in {{\\mathbb {C}}}\\)</span>: </p><div><div><span>$$\\begin{aligned} (a_{1}\\sigma +a_{2}\\sigma ^{\\nu })\\mathcal {Y}(z+\\beta ,\\sigma )-\\Omega (z)\\mathcal {Y}(z,\\sigma )={\\mathbb {F}}(z,\\sigma ), \\quad \\beta \\in {\\mathbb {R}},\\, \\beta \\ne 0, \\end{aligned}$$</span></div></div><p>where <span>\\(\\Omega (z)\\)</span> and <span>\\({\\mathbb {F}}(z)\\)</span> are given complex functions, while <span>\\(a_{1}\\)</span> and <span>\\(a_{2}\\)</span> are given real non-negative numbers. Under suitable conditions on the given functions and parameters, we construct explicit solutions of the equation and describe their asymptotic behavior as <span>\\(|z|\\rightarrow +\\infty \\)</span>. Some applications to the theory of functional difference equations and to the theory of boundary value problems governed by subdiffusion in nonsmooth domains are then discussed.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-023-01022-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For \(\nu \in [0,1]\) and a complex parameter \(\sigma ,\) \(Re\, \sigma >0,\) we discuss a linear inhomogeneous functional difference equation with variable coefficients on a complex plane \(z\in {{\mathbb {C}}}\):

$$\begin{aligned} (a_{1}\sigma +a_{2}\sigma ^{\nu })\mathcal {Y}(z+\beta ,\sigma )-\Omega (z)\mathcal {Y}(z,\sigma )={\mathbb {F}}(z,\sigma ), \quad \beta \in {\mathbb {R}},\, \beta \ne 0, \end{aligned}$$

where \(\Omega (z)\) and \({\mathbb {F}}(z)\) are given complex functions, while \(a_{1}\) and \(a_{2}\) are given real non-negative numbers. Under suitable conditions on the given functions and parameters, we construct explicit solutions of the equation and describe their asymptotic behavior as \(|z|\rightarrow +\infty \). Some applications to the theory of functional difference equations and to the theory of boundary value problems governed by subdiffusion in nonsmooth domains are then discussed.

Abstract Image

Abstract Image

关于一类函数差分方程:显式解法、渐近行为和应用
对于 \(\nu \in [0,1]\) 和一个复参数 \(\sigma ,\) \(Re\, \sigma >0,\) 我们讨论一个在复平面 \(z\in {\{mathbb {C}}\) 上具有可变系数的线性非均质函数差分方程:)$$\begin{aligned} (a_{1}\sigma +a_{2}\sigma ^{\nu })\mathcal {Y}(z+\beta ,\sigma )-\Omega (z)\mathcal {Y}(z,\sigma )=\{mathbb {F}}(z,\sigma ), \quad \beta \ in {\mathbb {R}}、\, \beta \ne 0, \end{aligned}$ 其中 \(\Omega (z)\) 和 \({\mathbb {F}}(z)\) 是给定的复变函数,而 \(a_{1}\) 和 \(a_{2}\) 是给定的实数非负数。在给定函数和参数的适当条件下,我们构建了方程的显式解,并将其渐近行为描述为 \(|z|\rightarrow +\infty \)。然后讨论了函数差分方程理论和非光滑域中由亚扩散支配的边界值问题理论的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信