On the Central Limit Theorem for linear eigenvalue statistics on random surfaces of large genus

Zeév Rudnick, Igor Wigman
{"title":"On the Central Limit Theorem for linear eigenvalue statistics on random surfaces of large genus","authors":"Zeév Rudnick, Igor Wigman","doi":"10.1007/s11854-023-0327-7","DOIUrl":null,"url":null,"abstract":"<p>We study the fluctuations of smooth linear statistics of Laplace eigenvalues of compact hyperbolic surfaces lying in short energy windows, when averaged over the moduli space of surfaces of a given genus. The average is taken with respect to the Weil–Petersson measure. We show that first taking the large genus limit, then a short window limit, the distribution tends to a Gaussian. The variance was recently shown to be given by the corresponding quantity for the Gaussian Orthogonal Ensemble (GOE), and the Gaussian fluctuations are also consistent with those in Random Matrix Theory, as conjectured in the physics literature for a fixed surface.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0327-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the fluctuations of smooth linear statistics of Laplace eigenvalues of compact hyperbolic surfaces lying in short energy windows, when averaged over the moduli space of surfaces of a given genus. The average is taken with respect to the Weil–Petersson measure. We show that first taking the large genus limit, then a short window limit, the distribution tends to a Gaussian. The variance was recently shown to be given by the corresponding quantity for the Gaussian Orthogonal Ensemble (GOE), and the Gaussian fluctuations are also consistent with those in Random Matrix Theory, as conjectured in the physics literature for a fixed surface.

论大属随机曲面上线性特征值统计的中心极限定理
我们研究了紧凑双曲面的拉普拉斯特征值在短能量窗内的平滑线性统计波动。平均值取自魏尔-彼得森量纲。我们证明,首先取大属极限,然后取短窗口极限,分布趋于高斯分布。最近的研究表明,方差由高斯正交集合(GOE)的相应量给出,高斯波动也与随机矩阵理论中的波动一致,正如物理学文献中对固定曲面的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信