{"title":"Video Codec Using Machine Learning Based on Parametric Orthogonal Filters","authors":"M. V. Gashnikov","doi":"10.3103/S1060992X23040021","DOIUrl":null,"url":null,"abstract":"<p>The research deals with video encoding using a machine learning-based videoframe approximator. The use of neural networks and hierarchical classifiers is considered in the context of this sort of approximator. Using a machine learning-based hierarchical classifier, the approximator switches at each point of a videoframe between elementary approximators from a predefined set of elementary classifiers. Convolutional filters with parametric orthogonal kernels are used as elementary classifiers. An algorithm for optimizing the hierarchical classifier is considered. The algorithm is based on recursive recalculations of the entropy quality index, which provides a good approximation of the encoded-data size. This sort of videoframe approximator is intended for a video codec using nested representations of videoframes. Real video sequences are used in computational experiments. The results indicate that the use of the videoframe approximator with a hierarchical classifier engaging parametric orthogonal kernels enables a noticeable reduction of the size of the encoded-data array.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 4","pages":"226 - 232"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23040021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The research deals with video encoding using a machine learning-based videoframe approximator. The use of neural networks and hierarchical classifiers is considered in the context of this sort of approximator. Using a machine learning-based hierarchical classifier, the approximator switches at each point of a videoframe between elementary approximators from a predefined set of elementary classifiers. Convolutional filters with parametric orthogonal kernels are used as elementary classifiers. An algorithm for optimizing the hierarchical classifier is considered. The algorithm is based on recursive recalculations of the entropy quality index, which provides a good approximation of the encoded-data size. This sort of videoframe approximator is intended for a video codec using nested representations of videoframes. Real video sequences are used in computational experiments. The results indicate that the use of the videoframe approximator with a hierarchical classifier engaging parametric orthogonal kernels enables a noticeable reduction of the size of the encoded-data array.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.