Video Codec Using Machine Learning Based on Parametric Orthogonal Filters

IF 1 Q4 OPTICS
M. V. Gashnikov
{"title":"Video Codec Using Machine Learning Based on Parametric Orthogonal Filters","authors":"M. V. Gashnikov","doi":"10.3103/S1060992X23040021","DOIUrl":null,"url":null,"abstract":"<p>The research deals with video encoding using a machine learning-based videoframe approximator. The use of neural networks and hierarchical classifiers is considered in the context of this sort of approximator. Using a machine learning-based hierarchical classifier, the approximator switches at each point of a videoframe between elementary approximators from a predefined set of elementary classifiers. Convolutional filters with parametric orthogonal kernels are used as elementary classifiers. An algorithm for optimizing the hierarchical classifier is considered. The algorithm is based on recursive recalculations of the entropy quality index, which provides a good approximation of the encoded-data size. This sort of videoframe approximator is intended for a video codec using nested representations of videoframes. Real video sequences are used in computational experiments. The results indicate that the use of the videoframe approximator with a hierarchical classifier engaging parametric orthogonal kernels enables a noticeable reduction of the size of the encoded-data array.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 4","pages":"226 - 232"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23040021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The research deals with video encoding using a machine learning-based videoframe approximator. The use of neural networks and hierarchical classifiers is considered in the context of this sort of approximator. Using a machine learning-based hierarchical classifier, the approximator switches at each point of a videoframe between elementary approximators from a predefined set of elementary classifiers. Convolutional filters with parametric orthogonal kernels are used as elementary classifiers. An algorithm for optimizing the hierarchical classifier is considered. The algorithm is based on recursive recalculations of the entropy quality index, which provides a good approximation of the encoded-data size. This sort of videoframe approximator is intended for a video codec using nested representations of videoframes. Real video sequences are used in computational experiments. The results indicate that the use of the videoframe approximator with a hierarchical classifier engaging parametric orthogonal kernels enables a noticeable reduction of the size of the encoded-data array.

Abstract Image

Abstract Image

基于参数正交滤波器的机器学习视频编解码器
该研究涉及使用基于机器学习的视频帧近似器进行视频编码。在这种近似器中考虑了神经网络和分层分类器的使用。通过使用基于机器学习的分层分类器,近似器可在视频帧的每个点上从一组预定义的基本分类器中切换基本近似器。使用具有参数正交核的卷积滤波器作为基本分类器。本文考虑了优化分层分类器的算法。该算法基于对熵质量指数的递归重新计算,它提供了编码数据大小的良好近似值。这种视频帧近似器适用于使用视频帧嵌套表示法的视频编解码器。在计算实验中使用了真实的视频序列。结果表明,将视频帧近似器与采用参数正交内核的分层分类器配合使用,可明显减小编码数据阵列的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信