Image cyberbullying detection and recognition using transfer deep machine learning

Ammar Almomani , Khalid Nahar , Mohammad Alauthman , Mohammed Azmi Al-Betar , Qussai Yaseen , Brij B. Gupta
{"title":"Image cyberbullying detection and recognition using transfer deep machine learning","authors":"Ammar Almomani ,&nbsp;Khalid Nahar ,&nbsp;Mohammad Alauthman ,&nbsp;Mohammed Azmi Al-Betar ,&nbsp;Qussai Yaseen ,&nbsp;Brij B. Gupta","doi":"10.1016/j.ijcce.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Cyberbullying detection on social media platforms is increasingly important, necessitating robust computational methods. Current approaches, while promising, have not fully leveraged the combined strengths of deep learning and traditional machine learning for enhanced performance. Moreover, online content complexity requires models that can capture nuanced contexts beyond text, which many current methods lack. This research proposes a novel hybrid approach using deep learning models as feature extractors and machine learning classifiers to improve cyberbullying detection. Extracting features using pre-trained deep learning models like InceptionV3, ResNet50, and VGG16, then feeding them into classifiers like Logistic Regression and Support Vector Machines, enhances understanding of the complex contexts where cyberbullying occurs. Experiments on an image dataset showed that combining deep learning and machine learning achieved higher accuracy than using either approach alone. This novel framework bridges the gap in existing literature and contributes to broader efforts to combat cyberbullying through more nuanced, context-aware detection methods. The hybrid technique demonstrates the potential of blending deep learning's representation learning strengths with machine learning's sample efficiency and interpretability.</p></div>","PeriodicalId":100694,"journal":{"name":"International Journal of Cognitive Computing in Engineering","volume":"5 ","pages":"Pages 14-26"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666307423000360/pdfft?md5=f0516ed3a8944953ff70302625dee76b&pid=1-s2.0-S2666307423000360-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Computing in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666307423000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cyberbullying detection on social media platforms is increasingly important, necessitating robust computational methods. Current approaches, while promising, have not fully leveraged the combined strengths of deep learning and traditional machine learning for enhanced performance. Moreover, online content complexity requires models that can capture nuanced contexts beyond text, which many current methods lack. This research proposes a novel hybrid approach using deep learning models as feature extractors and machine learning classifiers to improve cyberbullying detection. Extracting features using pre-trained deep learning models like InceptionV3, ResNet50, and VGG16, then feeding them into classifiers like Logistic Regression and Support Vector Machines, enhances understanding of the complex contexts where cyberbullying occurs. Experiments on an image dataset showed that combining deep learning and machine learning achieved higher accuracy than using either approach alone. This novel framework bridges the gap in existing literature and contributes to broader efforts to combat cyberbullying through more nuanced, context-aware detection methods. The hybrid technique demonstrates the potential of blending deep learning's representation learning strengths with machine learning's sample efficiency and interpretability.

利用传输深度机器学习进行图像网络欺凌检测和识别
社交媒体平台上的网络欺凌检测越来越重要,需要强大的计算方法。目前的方法虽然前景广阔,但还没有充分利用深度学习和传统机器学习的综合优势来提高性能。此外,在线内容的复杂性要求模型能够捕捉文本以外的细微语境,而目前的许多方法都缺乏这种能力。本研究提出了一种新颖的混合方法,使用深度学习模型作为特征提取器和机器学习分类器来改进网络欺凌检测。使用 InceptionV3、ResNet50 和 VGG16 等预先训练好的深度学习模型提取特征,然后将其输入逻辑回归和支持向量机等分类器,可增强对网络欺凌发生的复杂环境的理解。在一个图像数据集上进行的实验表明,将深度学习与机器学习相结合比单独使用其中一种方法获得更高的准确性。这种新颖的框架弥补了现有文献中的空白,有助于通过更细致入微的情境感知检测方法来打击网络欺凌。该混合技术展示了将深度学习的表征学习优势与机器学习的样本效率和可解释性相结合的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信