A pluggable single-image super-resolution algorithm based on second-order gradient loss

Shuran Lin , Chunjie Zhang , Yanwu Yang
{"title":"A pluggable single-image super-resolution algorithm based on second-order gradient loss","authors":"Shuran Lin ,&nbsp;Chunjie Zhang ,&nbsp;Yanwu Yang","doi":"10.1016/j.tbench.2023.100148","DOIUrl":null,"url":null,"abstract":"<div><div>Convolutional neural networks for single-image super-resolution have been widely used with great success. However, most of these methods use L1 loss to guide network optimization, resulting in blurry restored images with sharp edges smoothed. This is because L1 loss limits the optimization goal of the network to the statistical average of all solutions within the solution space of that task. To go beyond the L1 loss, this paper designs an image super-resolution algorithm based on second-order gradient loss. We impose additional constraints by considering the high-order gradient level of the image so that the network can focus on the recovery of fine details such as texture during the learning process. This helps to alleviate the problem of restored image texture over-smoothing to some extent. During network training, we extract the second-order gradient map of the generated image and the target image of the network by minimizing the distance between them, this guides the network to pay attention to the high-frequency detail information in the image and generate a high-resolution image with clearer edge and texture. Besides, the proposed loss function has good embeddability and can be easily integrated with existing image super-resolution networks. Experimental results show that the second-order gradient loss can significantly improve both Learned Perceptual Image Patch Similarity (LPIPS) and Frechet Inception Distance score (FID) performance over other image super-resolution deep learning models.</div></div>","PeriodicalId":100155,"journal":{"name":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","volume":"3 4","pages":"Article 100148"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772485923000650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks for single-image super-resolution have been widely used with great success. However, most of these methods use L1 loss to guide network optimization, resulting in blurry restored images with sharp edges smoothed. This is because L1 loss limits the optimization goal of the network to the statistical average of all solutions within the solution space of that task. To go beyond the L1 loss, this paper designs an image super-resolution algorithm based on second-order gradient loss. We impose additional constraints by considering the high-order gradient level of the image so that the network can focus on the recovery of fine details such as texture during the learning process. This helps to alleviate the problem of restored image texture over-smoothing to some extent. During network training, we extract the second-order gradient map of the generated image and the target image of the network by minimizing the distance between them, this guides the network to pay attention to the high-frequency detail information in the image and generate a high-resolution image with clearer edge and texture. Besides, the proposed loss function has good embeddability and can be easily integrated with existing image super-resolution networks. Experimental results show that the second-order gradient loss can significantly improve both Learned Perceptual Image Patch Similarity (LPIPS) and Frechet Inception Distance score (FID) performance over other image super-resolution deep learning models.
基于二阶梯度损失的可插入式单图像超分辨率算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信