Gene regulatory network inference based on causal discovery integrating with graph neural network

IF 0.6 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Ke Feng, Hongyang Jiang, Chaoyi Yin, Huiyan Sun
{"title":"Gene regulatory network inference based on causal discovery integrating with graph neural network","authors":"Ke Feng, Hongyang Jiang, Chaoyi Yin, Huiyan Sun","doi":"10.1002/qub2.26","DOIUrl":null,"url":null,"abstract":"Gene regulatory network (GRN) inference from gene expression data is a significant approach to understanding aspects of the biological system. Compared with generalized correlation‐based methods, causality‐inspired ones seem more rational to infer regulatory relationships. We propose GRINCD, a novel GRN inference framework empowered by graph representation learning and causal asymmetric learning, considering both linear and non‐linear regulatory relationships. First, high‐quality representation of each gene is generated using graph neural network. Then, we apply the additive noise model to predict the causal regulation of each regulator‐target pair. Additionally, we design two channels and finally assemble them for robust prediction. Through comprehensive comparisons of our framework with state‐of‐the‐art methods based on different principles on numerous datasets of diverse types and scales, the experimental results show that our framework achieves superior or comparable performance under various evaluation metrics. Our work provides a new clue for constructing GRNs, and our proposed framework GRINCD also shows potential in identifying key factors affecting cancer development.","PeriodicalId":45660,"journal":{"name":"Quantitative Biology","volume":"458 ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/qub2.26","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene regulatory network (GRN) inference from gene expression data is a significant approach to understanding aspects of the biological system. Compared with generalized correlation‐based methods, causality‐inspired ones seem more rational to infer regulatory relationships. We propose GRINCD, a novel GRN inference framework empowered by graph representation learning and causal asymmetric learning, considering both linear and non‐linear regulatory relationships. First, high‐quality representation of each gene is generated using graph neural network. Then, we apply the additive noise model to predict the causal regulation of each regulator‐target pair. Additionally, we design two channels and finally assemble them for robust prediction. Through comprehensive comparisons of our framework with state‐of‐the‐art methods based on different principles on numerous datasets of diverse types and scales, the experimental results show that our framework achieves superior or comparable performance under various evaluation metrics. Our work provides a new clue for constructing GRNs, and our proposed framework GRINCD also shows potential in identifying key factors affecting cancer development.
基于因果发现的基因调控网络推断与图神经网络的整合
从基因表达数据推断基因调控网络(GRN)是了解生物系统各方面的重要方法。与基于广义相关性的方法相比,受因果关系启发的方法在推断调控关系方面似乎更为合理。我们提出的 GRINCD 是一种新型 GRN 推断框架,它由图表示学习和因果非对称学习赋能,同时考虑线性和非线性调控关系。首先,利用图神经网络生成每个基因的高质量表示。然后,我们应用加性噪声模型来预测每对调控因子-目标的因果调控关系。此外,我们还设计了两个通道,最后将它们组合起来进行稳健预测。通过在大量不同类型和规模的数据集上对我们的框架与基于不同原理的先进方法进行综合比较,实验结果表明,我们的框架在各种评价指标下都取得了优异或相当的性能。我们的工作为构建 GRN 提供了一条新线索,我们提出的 GRINCD 框架也显示出在识别影响癌症发展的关键因素方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Biology
Quantitative Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
5.00
自引率
3.20%
发文量
264
期刊介绍: Quantitative Biology is an interdisciplinary journal that focuses on original research that uses quantitative approaches and technologies to analyze and integrate biological systems, construct and model engineered life systems, and gain a deeper understanding of the life sciences. It aims to provide a platform for not only the analysis but also the integration and construction of biological systems. It is a quarterly journal seeking to provide an inter- and multi-disciplinary forum for a broad blend of peer-reviewed academic papers in order to promote rapid communication and exchange between scientists in the East and the West. The content of Quantitative Biology will mainly focus on the two broad and related areas: ·bioinformatics and computational biology, which focuses on dealing with information technologies and computational methodologies that can efficiently and accurately manipulate –omics data and transform molecular information into biological knowledge. ·systems and synthetic biology, which focuses on complex interactions in biological systems and the emergent functional properties, and on the design and construction of new biological functions and systems. Its goal is to reflect the significant advances made in quantitatively investigating and modeling both natural and engineered life systems at the molecular and higher levels. The journal particularly encourages original papers that link novel theory with cutting-edge experiments, especially in the newly emerging and multi-disciplinary areas of research. The journal also welcomes high-quality reviews and perspective articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信