$T$-duality for transitive Courant algebroids

Pub Date : 2023-12-22 DOI:10.4310/jsg.2023.v21.n4.a4
Vicente Cortés, Liana David
{"title":"$T$-duality for transitive Courant algebroids","authors":"Vicente Cortés, Liana David","doi":"10.4310/jsg.2023.v21.n4.a4","DOIUrl":null,"url":null,"abstract":"We develop a theory of $T$-duality for transitive Courant algebroids. We show that $T$-duality between transitive Courant algebroids $E \\to M$ and $\\tilde{E} \\to \\tilde{M}$ induces a map between the spaces of sections of the corresponding canonical weighted spinor bundles $\\mathbb{S}_E$ and $\\mathbb{S}_\\tilde{E}$ intertwining the canonical Dirac generating operators. The map is shown to induce an isomorphism between the spaces of invariant spinors, compatible with an isomorphism between the spaces of invariant sections of the Courant algebroids. The notion of invariance is defined after lifting the vertical parallelisms of the underlying torus bundles $M \\to B$ and $\\tilde{M} \\to B$ to the Courant algebroids and their spinor bundles. We prove a general existence result for $T$-duals under assumptions generalizing the cohomological integrality conditions for $T$-duality in the exact case. Specializing our construction, we find that the $T$-dual of an exact or a heterotic Courant algebroid is again exact or heterotic, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n4.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a theory of $T$-duality for transitive Courant algebroids. We show that $T$-duality between transitive Courant algebroids $E \to M$ and $\tilde{E} \to \tilde{M}$ induces a map between the spaces of sections of the corresponding canonical weighted spinor bundles $\mathbb{S}_E$ and $\mathbb{S}_\tilde{E}$ intertwining the canonical Dirac generating operators. The map is shown to induce an isomorphism between the spaces of invariant spinors, compatible with an isomorphism between the spaces of invariant sections of the Courant algebroids. The notion of invariance is defined after lifting the vertical parallelisms of the underlying torus bundles $M \to B$ and $\tilde{M} \to B$ to the Courant algebroids and their spinor bundles. We prove a general existence result for $T$-duals under assumptions generalizing the cohomological integrality conditions for $T$-duality in the exact case. Specializing our construction, we find that the $T$-dual of an exact or a heterotic Courant algebroid is again exact or heterotic, respectively.
分享
查看原文
反式库朗梯形的 $T$ 对偶性
我们建立了一个关于反式库朗梯形的 $T$ 对偶性理论。我们证明,跨库仑梯形 $E \to M$ 和 $\tilde{E} \to \tilde{M}$ 之间的 $T$ 对偶性诱导了相应的规范加权簇的截面空间之间的映射。\到 \tilde{M}$ 之间诱导出一个映射,这个映射是相应的佳能加权旋量束 $\mathbb{S}_E$ 和 $\mathbb{S}_\tilde{E}$ 交织佳能狄拉克生成算子的截面空间。结果表明,该映射诱导了不变旋量空间之间的同构,与库朗梯形不变截面空间之间的同构相容。不变性的概念是在把底层环束 $M \to B$ 和 $\tilde{M} \to B$ 的垂直平行线提升到 Courant algebroids 之后定义的。\到 B$ 到库朗特实体及其旋量束。我们证明了$T$对偶的一般存在性结果,其假设条件概括了精确情况下$T$对偶的同调积分条件。将我们的构造特殊化后,我们发现精确库仑矢或异质库仑矢的 $T$ 二重又分别是精确的或异质的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信