{"title":"Analytical evaluation of laminated composite DCB test data for achieving validated modelling analysis","authors":"Gang Li, Guillaume Renaud, Chun Li","doi":"10.2140/jomms.2024.19.19","DOIUrl":null,"url":null,"abstract":"<p>An analytical solution was developed to study mode I delamination in a laminated composite double cantilever beam (DCB) based on an augmented beam model considering lateral shear. Using the measured DCB compliance, the proposed analytical solution was employed to determine the initial delamination length and its propagation profile. Also, a finite element (FE) correction method was presented to establish a correlation between the delamination length and the DCB opening compliance. Similar delamination lengths were obtained from the analytical and the numerical methods. Consequently, the problematic delamination lengths generated from in-situ optical measurement were corrected using the two methods. The fracture resistance curves of the DCB specimen were also updated. Accordingly, the subsequent DCB FE modelling analyses, integrated with cohesive zone modelling or virtual crack closure technique, were able to generate practical predictions. The study shows that the developed analytical solution could also improve the DCB test efficiency without in-situ optical measurements. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":"240 2 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.19","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An analytical solution was developed to study mode I delamination in a laminated composite double cantilever beam (DCB) based on an augmented beam model considering lateral shear. Using the measured DCB compliance, the proposed analytical solution was employed to determine the initial delamination length and its propagation profile. Also, a finite element (FE) correction method was presented to establish a correlation between the delamination length and the DCB opening compliance. Similar delamination lengths were obtained from the analytical and the numerical methods. Consequently, the problematic delamination lengths generated from in-situ optical measurement were corrected using the two methods. The fracture resistance curves of the DCB specimen were also updated. Accordingly, the subsequent DCB FE modelling analyses, integrated with cohesive zone modelling or virtual crack closure technique, were able to generate practical predictions. The study shows that the developed analytical solution could also improve the DCB test efficiency without in-situ optical measurements.
期刊介绍:
Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.