Interferometry analysis with fringe normalization and matrix Abel inversion for plasma diagnostics

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
S. Lee, I. Nam, M. Cho, D. Jang, S. Kwon, H. Suk, M. Kim
{"title":"Interferometry analysis with fringe normalization and matrix Abel inversion for plasma diagnostics","authors":"S. Lee, I. Nam, M. Cho, D. Jang, S. Kwon, H. Suk, M. Kim","doi":"10.1088/1748-0221/18/12/C12016","DOIUrl":null,"url":null,"abstract":"In plasma diagnostics using interferometry, the phase shift caused by the plasma in the fringes is extracted to determine the plasma density. The common method to extract the phase shift from the fringes is the fast-Fourier-Transform (FFT), but this technique encounters challenges when dealing with insufficient fringe numbers, spatially varying fringe frequencies, or extremely sharp phase changes. These challenges result in errors and hinder the acquisition of precise phase measurements. To tackle this issue, we introduced the fringe normalization (FN) method. The simulations demonstrated that the FN method extracts accurate phase information, surpassing the capabilities of the FFT method. As a result, this advancement enables more precise plasma diagnostics by mitigating errors that arise during the phase data processing. Furthermore, we improved the code for the inverse matrix Abel inversion to convert phase information into density. The simulation employing this code showed that the developed code provides more accurate values in the analysis of plasmas with a sharp density profile, assisting in electron beam manipulation in laser-plasma acceleration.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"24 ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/12/C12016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In plasma diagnostics using interferometry, the phase shift caused by the plasma in the fringes is extracted to determine the plasma density. The common method to extract the phase shift from the fringes is the fast-Fourier-Transform (FFT), but this technique encounters challenges when dealing with insufficient fringe numbers, spatially varying fringe frequencies, or extremely sharp phase changes. These challenges result in errors and hinder the acquisition of precise phase measurements. To tackle this issue, we introduced the fringe normalization (FN) method. The simulations demonstrated that the FN method extracts accurate phase information, surpassing the capabilities of the FFT method. As a result, this advancement enables more precise plasma diagnostics by mitigating errors that arise during the phase data processing. Furthermore, we improved the code for the inverse matrix Abel inversion to convert phase information into density. The simulation employing this code showed that the developed code provides more accurate values in the analysis of plasmas with a sharp density profile, assisting in electron beam manipulation in laser-plasma acceleration.
利用条纹归一化和矩阵阿贝尔反演进行干涉测量分析,用于等离子体诊断
在使用干涉测量法进行等离子体诊断时,提取等离子体在条纹中引起的相移来确定等离子体密度。从条纹中提取相移的常用方法是快速傅立叶变换(FFT),但这种技术在处理条纹数量不足、条纹频率空间变化或相位变化极其剧烈时会遇到挑战。这些挑战会导致误差,阻碍精确相位测量的获取。为了解决这个问题,我们引入了条纹归一化(FN)方法。模拟结果表明,FN 方法能提取精确的相位信息,其能力超过了 FFT 方法。因此,这一进步通过减少相位数据处理过程中产生的误差,实现了更精确的等离子体诊断。此外,我们还改进了将相位信息转换为密度的反矩阵阿贝尔反演代码。使用该代码进行的模拟显示,开发的代码在分析具有尖锐密度曲线的等离子体时能提供更精确的数值,有助于激光等离子体加速中的电子束操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Instrumentation
Journal of Instrumentation 工程技术-仪器仪表
CiteScore
2.40
自引率
15.40%
发文量
827
审稿时长
7.5 months
期刊介绍: Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include. -Accelerators: concepts, modelling, simulations and sources- Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons- Detector physics: concepts, processes, methods, modelling and simulations- Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics- Instrumentation and methods for plasma research- Methods and apparatus for astronomy and astrophysics- Detectors, methods and apparatus for biomedical applications, life sciences and material research- Instrumentation and techniques for medical imaging, diagnostics and therapy- Instrumentation and techniques for dosimetry, monitoring and radiation damage- Detectors, instrumentation and methods for non-destructive tests (NDT)- Detector readout concepts, electronics and data acquisition methods- Algorithms, software and data reduction methods- Materials and associated technologies, etc.- Engineering and technical issues. JINST also includes a section dedicated to technical reports and instrumentation theses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信