Haokai Ma, Ruobing Xie, Lei Meng, Xin Chen, Xu Zhang, Leyu Lin, Jie Zhou
{"title":"Triple Sequence Learning for Cross-domain Recommendation","authors":"Haokai Ma, Ruobing Xie, Lei Meng, Xin Chen, Xu Zhang, Leyu Lin, Jie Zhou","doi":"10.1145/3638351","DOIUrl":null,"url":null,"abstract":"<p>Cross-domain recommendation (CDR) aims to leverage the correlation of users’ behaviors in both the source and target domains to improve the user preference modeling in the target domain. Conventional CDR methods typically explore the dual-relations between the source and target domains’ behaviors. However, this may ignore the informative mixed behaviors that naturally reflect the user’s global preference. To address this issue, we present a novel framework, termed triple sequence learning for cross-domain recommendation (Tri-CDR), which jointly models the source, target, and mixed behavior sequences to highlight the global and target preference and precisely model the triple correlation in CDR. Specifically, Tri-CDR independently models the hidden representations for the triple behavior sequences and proposes a triple cross-domain attention (TCA) method to emphasize the informative knowledge related to both user’s global and target-domain preference. To comprehensively explore the cross-domain correlations, we design a triple contrastive learning (TCL) strategy that simultaneously considers the coarse-grained similarities and fine-grained distinctions among the triple sequences, ensuring the alignment while preserving information diversity in multi-domain. We conduct extensive experiments and analyses on six cross-domain settings. The significant improvements of Tri-CDR with different sequential encoders verify its effectiveness and universality. The source code is avaliable in https://github.com/hulkima/Tri-CDR.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638351","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-domain recommendation (CDR) aims to leverage the correlation of users’ behaviors in both the source and target domains to improve the user preference modeling in the target domain. Conventional CDR methods typically explore the dual-relations between the source and target domains’ behaviors. However, this may ignore the informative mixed behaviors that naturally reflect the user’s global preference. To address this issue, we present a novel framework, termed triple sequence learning for cross-domain recommendation (Tri-CDR), which jointly models the source, target, and mixed behavior sequences to highlight the global and target preference and precisely model the triple correlation in CDR. Specifically, Tri-CDR independently models the hidden representations for the triple behavior sequences and proposes a triple cross-domain attention (TCA) method to emphasize the informative knowledge related to both user’s global and target-domain preference. To comprehensively explore the cross-domain correlations, we design a triple contrastive learning (TCL) strategy that simultaneously considers the coarse-grained similarities and fine-grained distinctions among the triple sequences, ensuring the alignment while preserving information diversity in multi-domain. We conduct extensive experiments and analyses on six cross-domain settings. The significant improvements of Tri-CDR with different sequential encoders verify its effectiveness and universality. The source code is avaliable in https://github.com/hulkima/Tri-CDR.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.