{"title":"Enhancing safety, sustainability, and economics in mining through innovative pillar design: A state-of-the-art review","authors":"Yulin Zhang , Hongning Qi , Chuanqi Li , Jian Zhou","doi":"10.1016/j.jsasus.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>The design of underground hard rock pillars plays a crucial role in the safety and stability of underground mining operations. Ensuring safe and efficient resource extraction while safeguarding the well-being of miners is of paramount importance. This paper provides an overview of the background and significance of underground hard rock pillar design, presenting a comprehensive exploration of various technologies employed in assessing and designing stable pillars. These methodologies include empirical formulas, numerical simulations, statistical analyses, and artificial intelligence (AI) techniques, each contributing to enhancing safety and resource extraction efficiency in mining operations. Furthermore, this paper conducts a systematically analysis of global trends from the year 2000 onwards, utilizing CiteSpace and VOSviewer software tools. This analytical approach aims to provide a quantitative assessment of the domain of pillar design. Notably, the future of hard rock pillar design is poised for a transformative shift, as it involves the integration of data-driven and theory-driven approaches. By combining AI with finite element and discrete element simulations, the industry anticipates achieving more accurate, adaptable, and dynamic pillar designs. This integration is expected to not only improve safety and environmental sustainability but also yield significant economic benefits. In conclusion, the merging of data-driven and theory-driven methodologies in underground hard rock pillar design represents a promising avenue for advancing the field, ensuring safer, more sustainable, and economically viable underground mining practices.</p></div>","PeriodicalId":100831,"journal":{"name":"Journal of Safety and Sustainability","volume":"1 1","pages":"Pages 53-73"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949926723000057/pdfft?md5=61360ae0c863855d11ad5896af9f77f7&pid=1-s2.0-S2949926723000057-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Safety and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949926723000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The design of underground hard rock pillars plays a crucial role in the safety and stability of underground mining operations. Ensuring safe and efficient resource extraction while safeguarding the well-being of miners is of paramount importance. This paper provides an overview of the background and significance of underground hard rock pillar design, presenting a comprehensive exploration of various technologies employed in assessing and designing stable pillars. These methodologies include empirical formulas, numerical simulations, statistical analyses, and artificial intelligence (AI) techniques, each contributing to enhancing safety and resource extraction efficiency in mining operations. Furthermore, this paper conducts a systematically analysis of global trends from the year 2000 onwards, utilizing CiteSpace and VOSviewer software tools. This analytical approach aims to provide a quantitative assessment of the domain of pillar design. Notably, the future of hard rock pillar design is poised for a transformative shift, as it involves the integration of data-driven and theory-driven approaches. By combining AI with finite element and discrete element simulations, the industry anticipates achieving more accurate, adaptable, and dynamic pillar designs. This integration is expected to not only improve safety and environmental sustainability but also yield significant economic benefits. In conclusion, the merging of data-driven and theory-driven methodologies in underground hard rock pillar design represents a promising avenue for advancing the field, ensuring safer, more sustainable, and economically viable underground mining practices.