An Asymptotic Lower Bound on the Number of Polyominoes

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
Vuong Bui
{"title":"An Asymptotic Lower Bound on the Number of Polyominoes","authors":"Vuong Bui","doi":"10.1007/s00026-023-00675-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>P</i>(<i>n</i>) be the number of polyominoes of <i>n</i> cells and <span>\\(\\lambda \\)</span> be Klarner’s constant, that is, <span>\\(\\lambda =\\lim _{n\\rightarrow \\infty } \\root n \\of {P(n)}\\)</span>. We show that there exist some positive numbers <i>A</i>, <i>T</i>, so that for every <i>n</i></p><div><div><span>$$\\begin{aligned} P(n) \\ge An^{-T\\log n} \\lambda ^n. \\end{aligned}$$</span></div></div><p>This is somewhat a step toward the well-known conjecture that there exist positive <span>\\(C,\\theta \\)</span>, so that <span>\\(P(n)\\sim Cn^{-\\theta }\\lambda ^n\\)</span> for every <i>n</i>. In fact, if we assume another popular conjecture that <span>\\(P(n)/P(n-1)\\)</span> is increasing, we can get rid of <span>\\(\\log n\\)</span> to have </p><div><div><span>$$\\begin{aligned} P(n)\\ge An^{-T}\\lambda ^n. \\end{aligned}$$</span></div></div><p>Beside the above theoretical result, we also conjecture that the ratio of the number of some class of polyominoes, namely inconstructible polyominoes, over <i>P</i>(<i>n</i>) is decreasing, by observing this behavior for the available values. The conjecture opens a nice approach to bounding <span>\\(\\lambda \\)</span> from above, since if it is the case, we can conclude that </p><div><div><span>$$\\begin{aligned} \\lambda &lt; 4.1141, \\end{aligned}$$</span></div></div><p>which is quite close to the current best lower bound <span>\\(\\lambda &gt; 4.0025\\)</span> and greatly improves the current best upper bound <span>\\(\\lambda &lt; 4.5252\\)</span>. The approach is merely analytically manipulating the known or likely properties of the function <i>P</i>(<i>n</i>), instead of giving new insights of the structure of polyominoes. The techniques can be applied to other lattice animals and self-avoiding polygons of a given area with almost no change.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00675-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let P(n) be the number of polyominoes of n cells and \(\lambda \) be Klarner’s constant, that is, \(\lambda =\lim _{n\rightarrow \infty } \root n \of {P(n)}\). We show that there exist some positive numbers AT, so that for every n

$$\begin{aligned} P(n) \ge An^{-T\log n} \lambda ^n. \end{aligned}$$

This is somewhat a step toward the well-known conjecture that there exist positive \(C,\theta \), so that \(P(n)\sim Cn^{-\theta }\lambda ^n\) for every n. In fact, if we assume another popular conjecture that \(P(n)/P(n-1)\) is increasing, we can get rid of \(\log n\) to have

$$\begin{aligned} P(n)\ge An^{-T}\lambda ^n. \end{aligned}$$

Beside the above theoretical result, we also conjecture that the ratio of the number of some class of polyominoes, namely inconstructible polyominoes, over P(n) is decreasing, by observing this behavior for the available values. The conjecture opens a nice approach to bounding \(\lambda \) from above, since if it is the case, we can conclude that

$$\begin{aligned} \lambda < 4.1141, \end{aligned}$$

which is quite close to the current best lower bound \(\lambda > 4.0025\) and greatly improves the current best upper bound \(\lambda < 4.5252\). The approach is merely analytically manipulating the known or likely properties of the function P(n), instead of giving new insights of the structure of polyominoes. The techniques can be applied to other lattice animals and self-avoiding polygons of a given area with almost no change.

Abstract Image

Abstract Image

多面体数量的渐近下限
让 P(n) 是 n 个单元的多面体数,而 \(\lambda \) 是克拉纳常数,即 \(\lambda =\lim _{nrightarrow \infty })。\根 n ({P(n)})。我们证明存在一些正数 A、T,所以对于每一个 n$$(开始{对齐}P(n) \ge An^{-T\log n}\lambda ^n.\end{aligned}$$ 其中 ( (lambda)是克拉纳常数,即 ( (lambda =lim _{n\rightarrow \infty })。\root n ({P(n)}的根)。事实上,如果我们假设另一个流行的猜想是\(P(n)/P(n-1)\)是递增的,我们就可以摆脱\(\log n\) 得到$$begin{aligned}。P(n)\ge An^{-T}\lambda ^n.\end{aligned}$$除了上述理论结果,我们还猜想,通过观察可用值的这一行为,某类多角体(即不可构造多角体)的数量与 P(n) 的比率是递减的。这个猜想开辟了一个很好的方法来从上面限定 \(\lambda \),因为如果是这样的话,我们就可以得出结论:$$\begin{aligned}。\4.1141, \end{aligned}$$这非常接近于当前最好的下界(4.0025),并且大大提高了当前最好的上界(4.5252)。这种方法只是对函数 P(n) 的已知或可能性质进行了分析处理,而不是对多面体的结构提出新的见解。这些技术可以应用于其他格子动物和给定面积的自避让多边形,几乎没有任何变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Combinatorics
Annals of Combinatorics 数学-应用数学
CiteScore
1.00
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board. The scope of Annals of Combinatorics is covered by the following three tracks: Algebraic Combinatorics: Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices Analytic and Algorithmic Combinatorics: Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms Graphs and Matroids: Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信