Stable Recovery of Sparse Signals With Non-Convex Weighted $r$-Norm Minus 1-Norm

IF 0.9 4区 数学 Q2 MATHEMATICS
Jianwen Huang, Feng Zhang, Xinling Liu, Jianjun Wang, Jinping Jia and Runke Wang
{"title":"Stable Recovery of Sparse Signals With Non-Convex Weighted $r$-Norm Minus 1-Norm","authors":"Jianwen Huang, Feng Zhang, Xinling Liu, Jianjun Wang, Jinping Jia and Runke Wang","doi":"10.4208/jcm.2307-m2022-0225","DOIUrl":null,"url":null,"abstract":". Given the measurement matrix A and the observation signal y , the central purpose of compressed sensing is to find the most sparse solution of the underdetermined linear system y = Ax + z , where x is the s -sparse signal to be recovered and z is the noise vector. Zhou and Yu [1] recently proposed a novel non-convex weighted ℓ r − ℓ 1 minimization method for effective sparse recovery. In this paper, we reveal that based on ( y, A ), any s -sparse signal can be robustly reconstructed via this method provided that the mutual coherence µ of A fulfills µ < 1 / ( s − 1 + 2 1 =r − 1 s 1 =r ). To our best of knowledge, this is the first mutual coherence based sufficient condition for such approach.","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"89 ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jcm.2307-m2022-0225","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

. Given the measurement matrix A and the observation signal y , the central purpose of compressed sensing is to find the most sparse solution of the underdetermined linear system y = Ax + z , where x is the s -sparse signal to be recovered and z is the noise vector. Zhou and Yu [1] recently proposed a novel non-convex weighted ℓ r − ℓ 1 minimization method for effective sparse recovery. In this paper, we reveal that based on ( y, A ), any s -sparse signal can be robustly reconstructed via this method provided that the mutual coherence µ of A fulfills µ < 1 / ( s − 1 + 2 1 =r − 1 s 1 =r ). To our best of knowledge, this is the first mutual coherence based sufficient condition for such approach.
用非凸加权 $r$ 正则减 1 正则稳定恢复稀疏信号
.给定测量矩阵 A 和观测信号 y,压缩传感的核心目的是找到未定线性系统 y = Ax + z 的最稀疏解,其中 x 是要恢复的 s -稀疏信号,z 是噪声矢量。Zhou 和 Yu [1] 最近提出了一种新的非凸加权 ℓ r - ℓ 1 最小化方法,用于有效的稀疏恢复。本文揭示了在 ( y, A ) 的基础上,只要 A 的相互相干性 µ 满足 µ < 1 / ( s - 1 + 2 1 =r - 1 s 1 =r ) 的条件,任何 s 稀疏信号都可以通过这种方法稳健地重建。据我们所知,这是第一个基于互相干性的这种方法的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
1130
审稿时长
2 months
期刊介绍: Journal of Computational Mathematics (JCM) is an international scientific computing journal founded by Professor Feng Kang in 1983, which is the first Chinese computational mathematics journal published in English. JCM covers all branches of modern computational mathematics such as numerical linear algebra, numerical optimization, computational geometry, numerical PDEs, and inverse problems. JCM has been sponsored by the Institute of Computational Mathematics of the Chinese Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信