Z.B. Lin, Z. Pan, Z. Wang, Z.Y. He, T.Y. Yang, Z. Chen, Y. Yuan, Z.C. Kang, F. Xie, Q. Li, J.D. Liu, B. Ye
{"title":"Feasibility study of a coded aperture imaging technique for position-sensitive muonic X-ray atomic ratio reconstruction","authors":"Z.B. Lin, Z. Pan, Z. Wang, Z.Y. He, T.Y. Yang, Z. Chen, Y. Yuan, Z.C. Kang, F. Xie, Q. Li, J.D. Liu, B. Ye","doi":"10.1088/1748-0221/18/12/T12007","DOIUrl":null,"url":null,"abstract":"A position-sensitive multi-compound inspection methodology using Muonic X-ray Emission Spectroscopic (μ-XES) element analysis is proposed due to the ability of the coded aperture imaging technique to maintain the relative intensity of X-rays. This methodology can simultaneously obtain the atomic ratio of different regions of the sample under study. Therefore, the mis-judgements of material compositions caused by averaging results can be reduced. The atomic ratio reconstruction quality is mainly related to X-ray counts (Nx ), atomic ratios of materials (AT ), size and placement of sample blocks. In this work, several different sample blocks made of light elements were designed by GEANT4 Monte Carlo (MC) simulations to study the influences of Nx , AT , size and placement of sample on atomic ratio reconstruction quality. In the inspection of multiple sample blocks, this methodology successfully distinguished the material compositions from different regions by reconstructing the atomic ratios of C/N and O/N. Moreover, this methodology can clearly image element blocks larger than 2 × 2 mm2.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"99 ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/12/T12007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
A position-sensitive multi-compound inspection methodology using Muonic X-ray Emission Spectroscopic (μ-XES) element analysis is proposed due to the ability of the coded aperture imaging technique to maintain the relative intensity of X-rays. This methodology can simultaneously obtain the atomic ratio of different regions of the sample under study. Therefore, the mis-judgements of material compositions caused by averaging results can be reduced. The atomic ratio reconstruction quality is mainly related to X-ray counts (Nx ), atomic ratios of materials (AT ), size and placement of sample blocks. In this work, several different sample blocks made of light elements were designed by GEANT4 Monte Carlo (MC) simulations to study the influences of Nx , AT , size and placement of sample on atomic ratio reconstruction quality. In the inspection of multiple sample blocks, this methodology successfully distinguished the material compositions from different regions by reconstructing the atomic ratios of C/N and O/N. Moreover, this methodology can clearly image element blocks larger than 2 × 2 mm2.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.