Jinsheng Sun , Yuanwei Sun , Yong Lai , Li Li , Gang Yang , Kaihe Lv , Taifeng Zhang , Xianfa Zhang , Zonglun Wang , Zhe Xu , Zhiwen Dai , Jingping Liu
{"title":"Progress in the application of graphene material in oilfield chemistry: A review","authors":"Jinsheng Sun , Yuanwei Sun , Yong Lai , Li Li , Gang Yang , Kaihe Lv , Taifeng Zhang , Xianfa Zhang , Zonglun Wang , Zhe Xu , Zhiwen Dai , Jingping Liu","doi":"10.1016/j.petlm.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene is a single atom thick crystal composed of carbon atoms. It is the lightest, thinnest, strongest material that conducts heat and electricity well heretofore. In terms of application, by introducing oxygen-containing groups, graphene can be well dispersed in solvents, can be chemically modified and functionalized, or connected with other electroactive substances through covalent bond or non-covalent bond to form composite materials, which is conducive to further processing and promotion. The application of graphene in oilfield chemistry started late, but developed rapidly. Graphene has played an active role in drilling fluid, cementing fluid, fracturing fluid, displacement fluid and other oilfield working fluids. It can enhance the temperature and salt resistance of working fluid and improve the effect of working fluid. In this paper, several directions of graphene applications in oilfield chemistry, such as modified graphene, graphene copolymers and graphene nanoparticles, are reviewed in detail from the synthesis methods, action mechanisms and effects of graphene and its derivatives, and the frontier cases at this stage are given. On the basis of the existing research, suggestions for the development direction of graphene materials in oilfield chemistry are given for a variety of graphene materials, aiming to provide guidance for the application of graphene in oilfield chemistry.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000779/pdfft?md5=420b0cd9b426ea1833780724880eed5a&pid=1-s2.0-S2405656123000779-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene is a single atom thick crystal composed of carbon atoms. It is the lightest, thinnest, strongest material that conducts heat and electricity well heretofore. In terms of application, by introducing oxygen-containing groups, graphene can be well dispersed in solvents, can be chemically modified and functionalized, or connected with other electroactive substances through covalent bond or non-covalent bond to form composite materials, which is conducive to further processing and promotion. The application of graphene in oilfield chemistry started late, but developed rapidly. Graphene has played an active role in drilling fluid, cementing fluid, fracturing fluid, displacement fluid and other oilfield working fluids. It can enhance the temperature and salt resistance of working fluid and improve the effect of working fluid. In this paper, several directions of graphene applications in oilfield chemistry, such as modified graphene, graphene copolymers and graphene nanoparticles, are reviewed in detail from the synthesis methods, action mechanisms and effects of graphene and its derivatives, and the frontier cases at this stage are given. On the basis of the existing research, suggestions for the development direction of graphene materials in oilfield chemistry are given for a variety of graphene materials, aiming to provide guidance for the application of graphene in oilfield chemistry.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing