Tensorial and Hadamard product inequalities for functions of selfadjoint operators in Hilbert spaces in terms of Kantorovich ratio

Q3 Mathematics
S.S. Dragomir
{"title":"Tensorial and Hadamard product inequalities for functions of selfadjoint operators in Hilbert spaces in terms of Kantorovich ratio","authors":"S.S. Dragomir","doi":"10.17398/2605-5686.38.2.237","DOIUrl":null,"url":null,"abstract":"Let H be a Hilbert space. In this paper we show among others that, if f, g are continuous on the interval I with \n0 <γ ≤ f (t)/g (t)≤ Γ for t ∈ I \nand if A and B are selfadjoint operators with Sp (A), Sp (B) ⊂ I, then \n[f1−ν(A)g ν(A)] ⊗ [f ν(B)g 1−ν(B)] ≤ (1 − ν) f(A) ⊗ g (B) + νg(A) ⊗ f(B) \n                             ≤[(γ + Γ)2/4γΓ ]R [f1−ν (A) g ν(A)] ⊗ [f ν(B) g1−ν (B)]. \nThe above inequalities also hold for the Hadamard product “ ◦ ” instead of tensorial product “ ⊗ ”.","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":"27 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.38.2.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be a Hilbert space. In this paper we show among others that, if f, g are continuous on the interval I with 0 <γ ≤ f (t)/g (t)≤ Γ for t ∈ I and if A and B are selfadjoint operators with Sp (A), Sp (B) ⊂ I, then [f1−ν(A)g ν(A)] ⊗ [f ν(B)g 1−ν(B)] ≤ (1 − ν) f(A) ⊗ g (B) + νg(A) ⊗ f(B)                              ≤[(γ + Γ)2/4γΓ ]R [f1−ν (A) g ν(A)] ⊗ [f ν(B) g1−ν (B)]. The above inequalities also hold for the Hadamard product “ ◦ ” instead of tensorial product “ ⊗ ”.
以康托洛维奇比率表示的希尔伯特空间中自相关算子函数的张量和哈达玛积不等式
假设 H 是一个希尔伯特空间。在本文中,我们特别证明了,如果 f、g 在区间 I 上连续,且 t∈I 时 0 <γ ≤ f (t)/g (t)≤ Γ,并且如果 A 和 B 是 Sp (A)、Sp (B) ⊂ I 的自交算子,那么 [f1-ν(A)g ν(A)] ⊗ [f ν(B)g 1-ν(B)] ≤ Γ、则 [f1-ν(A)g ν(A)] ⊗ [f ν(B)g 1-ν(B)] ≤ (1 -ν) f(A) ⊗ g (B) + νg(A) ⊗ f(B) ≤[(γ + Γ)2/4γΓ ]R [f1-ν (A) g ν(A)] ⊗ [f ν(B) g1-ν (B)].上述不等式对于哈达玛积 " ◦ " 而不是张量积 " ⊗ " 同样成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extracta Mathematicae
Extracta Mathematicae Mathematics-Mathematics (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
6
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信