On Repdigits Which are Sums or Differences of Two k-Pell Numbers

Pub Date : 2023-12-01 DOI:10.1515/ms-2023-0102
Mariama Ndao Faye, S. Rihane, A. Togbé
{"title":"On Repdigits Which are Sums or Differences of Two k-Pell Numbers","authors":"Mariama Ndao Faye, S. Rihane, A. Togbé","doi":"10.1515/ms-2023-0102","DOIUrl":null,"url":null,"abstract":"ABSTRACT Let k ≥ 2. A generalization of the well-known Pell sequence is the k-Pell sequence whose first k terms are 0,…, 0, 1 and each term afterwards is given by the linear recurrence pn(k)=2Pn−1(k)+Pn−2(k)+⋯+Pn−k(k). The goal of this paper is to show that 11, 33, 55, 88 and 99 are all repdigits expressible as sum or difference of two k-Pell. The proof of our main theorem uses lower bounds for linear forms in logarithms of algebraic numbers and a modified version of Baker-Davenport reduction method (due to Dujella and Pethő). This extends a result of Bravo and Herrera [Repdigits in generalized Pell sequences, Arch. Math. (Brno) 56(4) (2020), 249–262].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2023-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Let k ≥ 2. A generalization of the well-known Pell sequence is the k-Pell sequence whose first k terms are 0,…, 0, 1 and each term afterwards is given by the linear recurrence pn(k)=2Pn−1(k)+Pn−2(k)+⋯+Pn−k(k). The goal of this paper is to show that 11, 33, 55, 88 and 99 are all repdigits expressible as sum or difference of two k-Pell. The proof of our main theorem uses lower bounds for linear forms in logarithms of algebraic numbers and a modified version of Baker-Davenport reduction method (due to Dujella and Pethő). This extends a result of Bravo and Herrera [Repdigits in generalized Pell sequences, Arch. Math. (Brno) 56(4) (2020), 249–262].
分享
查看原文
关于两个 k-Pell 数的和或差的重数
摘要 设 k ≥ 2。众所周知的佩尔序列的广义化是 k-Pell 序列,其前 k 项为 0,...,0,1,之后的每项由线性递推公式 pn(k)=2Pn-1(k)+Pn-2(k)+⋯+Pn-k(k)给出。本文的目的是证明 11、33、55、88 和 99 都是可以用两个 k-Pell 的和或差来表示的重数字。我们主要定理的证明使用了代数数对数线性形式的下界,以及改进版的贝克-达文波特还原法(由杜杰拉和佩索提出)。这扩展了布拉沃和埃雷拉 [Repdigits in generalized Pell sequences, Arch.(Brno) 56(4) (2020), 249-262].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信