Sawsan Abdullah Abduljabbar Anaam, M. Z. Sahdan
求助PDF
{"title":"Precursor-concentration-controlled Morphology of TiO2 Nanorod/Nanoflower Films for Enhanced Photoelectrochemical Water Splitting and Investigating Their Growth Mechanism","authors":"Sawsan Abdullah Abduljabbar Anaam, M. Z. Sahdan","doi":"10.9767/bcrec.20061","DOIUrl":null,"url":null,"abstract":"Titanium dioxide (TiO2) has been considered as one of the most promising photocatalysts for photoelectrochemical (PEC) water splitting. Therefore, numerous efforts have been devoted to improving its PEC water splitting performance. In this study, TiO2 nanorod/nanoflower (NRF) films with controlled morphology were synthesized on fluorine-doped tin oxide (FTO) glass substrates by following a facile one-step hydrothermal method. The TiO2 NRF films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectrometer (EDS), and ultraviolet-visible (UV-Vis) spectrophotometer. FE-SEM showed that the TiO2 films are composed of a simultaneous growth of a primary layer of TiO2 nanorod arrays (NRAs) and a second layer of TiO2 nanoflowers (NFs). The proposed growth mechanism highlighted the influence of precursor concentration on nucleation sites, affecting the preferred crystallographic plane growth of rutile TiO2 and nanorod alignment on the FTO substrate. Intriguingly, TiO2 NRF films prepared with 1.0 mL of titanium butoxide exhibited a maximum photocurrent density of 3.58 mA.cm−2 at 1.23 V versus (vs.) the reversible hydrogen electrode (RHE), along with a maximum photoconversion efficiency of 0.69%. The enhanced photocurrent density and photoconversion efficiency were attributed to the optimum thickness in the range of 4.52-7.31 µm, which caused the film to be formed with a unique morphology of the primary layer with well-vertically aligned nanorods and the second layer of flowers consisting of numerous rods stacked on top of one another. This study demonstrates the importance of designing semiconductors with 1D nanorod/3D nanoflower structures as high-performance photoelectrodes for PEC water splitting. Copyright © 2024 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"37 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.20061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
用于增强光电化学水分离的前驱体-浓度控制型二氧化钛纳米棒/纳米花薄膜形态及其生长机理研究
二氧化钛(TiO2)一直被认为是最有前途的光电化学(PEC)分水光催化剂之一。因此,人们一直致力于提高其光电化学分水性能。本研究采用简单的一步水热法,在掺氟氧化锡(FTO)玻璃基底上合成了具有可控形貌的 TiO2 纳米棒/纳米花(NRF)薄膜。通过 X 射线衍射 (XRD)、拉曼光谱、场发射扫描电子显微镜 (FE-SEM)、原子力显微镜 (AFM)、能量色散 X 射线光谱仪 (EDS) 和紫外可见分光光度计 (UV-Vis) 对 TiO2 NRF 薄膜进行了表征。FE-SEM 显示,TiO2 薄膜由第一层 TiO2 纳米棒阵列 (NRA) 和第二层 TiO2 纳米花 (NF) 同时生长组成。所提出的生长机制突出了前驱体浓度对成核点的影响,影响了金红石型二氧化钛的优先晶面生长和纳米棒在 FTO 基底上的排列。有趣的是,用 1.0 mL 丁氧化钛制备的 TiO2 NRF 薄膜在 1.23 V 电压下与可逆氢电极(RHE)相比,最大光电流密度为 3.58 mA.cm-2,最大光电转换效率为 0.69%。光电流密度和光电转换效率的提高归功于 4.52-7.31 µm 范围内的最佳厚度,这使得形成的薄膜具有独特的形态:第一层是垂直排列的纳米棒,第二层是由许多棒堆叠而成的花。这项研究表明,设计具有一维纳米棒/三维纳米花结构的半导体作为用于 PEC 水分离的高性能光电极非常重要。作者版权所有 © 2024 年,BCREC 集团出版。本文采用 CC BY-SA 许可协议 (https://creativecommons.org/licenses/by-sa/4.0) 公开发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。