I. Chernega, Mariia Martsinkiv, Taras Vasylyshyn, Andriy Zagorodnyuk
{"title":"Applications of Supersymmetric Polynomials in Statistical Quantum Physics","authors":"I. Chernega, Mariia Martsinkiv, Taras Vasylyshyn, Andriy Zagorodnyuk","doi":"10.3390/quantum5040043","DOIUrl":null,"url":null,"abstract":"We propose a correspondence between the partition functions of ideal gases consisting of both bosons and fermions and the algebraic bases of supersymmetric polynomials on the Banach space of absolutely summable two-sided sequences ℓ1(Z0). Such an approach allows us to interpret some of the combinatorial identities for supersymmetric polynomials from a physical point of view. We consider a relation of equivalence for ℓ1(Z0), induced by the supersymmetric polynomials, and the semi-ring algebraic structures on the quotient set with respect to this relation. The quotient set is a natural model for the set of energy levels of a quantum system. We introduce two different topological semi-ring structures into this set and discuss their possible physical interpretations.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":"7 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum5040043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a correspondence between the partition functions of ideal gases consisting of both bosons and fermions and the algebraic bases of supersymmetric polynomials on the Banach space of absolutely summable two-sided sequences ℓ1(Z0). Such an approach allows us to interpret some of the combinatorial identities for supersymmetric polynomials from a physical point of view. We consider a relation of equivalence for ℓ1(Z0), induced by the supersymmetric polynomials, and the semi-ring algebraic structures on the quotient set with respect to this relation. The quotient set is a natural model for the set of energy levels of a quantum system. We introduce two different topological semi-ring structures into this set and discuss their possible physical interpretations.