Modernization of the Feed Water Regenerative Heating System in the “PT-60” Steam Turbine Unit Cycle

Q3 Energy
V. Yanchuk, V. Romaniuk
{"title":"Modernization of the Feed Water Regenerative Heating System in the “PT-60” Steam Turbine Unit Cycle","authors":"V. Yanchuk, V. Romaniuk","doi":"10.21122/1029-7448-2023-66-6-509-529","DOIUrl":null,"url":null,"abstract":"At industrial CHP plants which are characterized, in particular, by steam supply to industrial consumers, in cases with significant condensate losses, it is proposed to develop a system of feed water regenerative heating by utilizing low-temperature waste heat flows those are available directly at the CHP plant. The regenerative use of low-temperature heat flows within the CHP that is proposed is possible only on the basis of heat pumps use. In this context, the use of electrically-driven heat pumps (EHP) and absorption heat pumps (AHP) is considered. It is shown that, despite the higher heating coefficient of the EHP, the thermodynamic (exergetic) efficiency and economic efficiency of the AHP are higher. Furthermore, the latter also has operational advantages. It is possible to use heat flows with various heat carriers as AHP drive, those are required for the transfer of thermal energy from a cold source to a hot receiver. In this paper, using the example of the “PT-60” steam turbogenerator unit, which is the most common type for CHP plants of the Belarusian power system, the indicators of the primary fuel use efficiency growth at the CHP plant for the AHP with a steam drive are determined. Three scenarios of the use of AHP as part of the thermal scheme of the CHP are considered, viz. with an increase in generation, with the maintenance of generation or with a decrease in the generation of electric energy. The latter is relevant in the current situation with the Unified Energy System of Belarus. In this case, while maintaining the minimum steam flow into the condenser of 12 t/h, the following increase in the plant efficiency has been obtained: electrical efficiency increased by 0.90 %, energy efficiency – by 0.55 %, and exergetic efficiency – by 0.23 %.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2023-66-6-509-529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

At industrial CHP plants which are characterized, in particular, by steam supply to industrial consumers, in cases with significant condensate losses, it is proposed to develop a system of feed water regenerative heating by utilizing low-temperature waste heat flows those are available directly at the CHP plant. The regenerative use of low-temperature heat flows within the CHP that is proposed is possible only on the basis of heat pumps use. In this context, the use of electrically-driven heat pumps (EHP) and absorption heat pumps (AHP) is considered. It is shown that, despite the higher heating coefficient of the EHP, the thermodynamic (exergetic) efficiency and economic efficiency of the AHP are higher. Furthermore, the latter also has operational advantages. It is possible to use heat flows with various heat carriers as AHP drive, those are required for the transfer of thermal energy from a cold source to a hot receiver. In this paper, using the example of the “PT-60” steam turbogenerator unit, which is the most common type for CHP plants of the Belarusian power system, the indicators of the primary fuel use efficiency growth at the CHP plant for the AHP with a steam drive are determined. Three scenarios of the use of AHP as part of the thermal scheme of the CHP are considered, viz. with an increase in generation, with the maintenance of generation or with a decrease in the generation of electric energy. The latter is relevant in the current situation with the Unified Energy System of Belarus. In this case, while maintaining the minimum steam flow into the condenser of 12 t/h, the following increase in the plant efficiency has been obtained: electrical efficiency increased by 0.90 %, energy efficiency – by 0.55 %, and exergetic efficiency – by 0.23 %.
PT-60 "蒸汽轮机组循环给水再生加热系统的现代化改造
工业热电联产厂的特点是向工业用户供应蒸汽,在冷凝水损失严重的情况下,建议开发一套给水再生加热系统,利用热电联产厂可直接获得的低温废热流。只有在使用热泵的基础上,才有可能在热电联产中对低温热流进行再生利用。在此背景下,考虑了电驱动热泵(EHP)和吸收式热泵(AHP)的使用。结果表明,尽管 EHP 的加热系数更高,但 AHP 的热力学(能效)和经济效益更高。此外,后者还具有运行优势。可以使用各种载热体的热流作为 AHP 驱动,这些载热体是将热能从冷源传输到热接收器所必需的。本文以 "PT-60 "蒸汽涡轮发电机组(白俄罗斯电力系统热电联产厂最常见的型号)为例,确定了热电联产厂采用蒸汽驱动的自动热电联产一次燃料使用效率增长指标。作为热电联产热能方案的一部分,考虑了三种使用 AHP 的方案,即增加发电量、维持发电量或减少发电量。后者与白俄罗斯统一能源系统的现状相关。在这种情况下,在保持进入冷凝器的最小蒸汽流量为 12 吨/小时的情况下,电厂效率得到了如下提高:电力效率提高了 0.90%,能源效率提高了 0.55%,能效提高了 0.23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信