J. Kohl, Thomas Will, Tobias Klier, Lars Müller, Christian Goth
{"title":"Influence of material thickness and hatching strategies on laser cutting of epoxy mold composites","authors":"J. Kohl, Thomas Will, Tobias Klier, Lars Müller, Christian Goth","doi":"10.2351/7.0001137","DOIUrl":null,"url":null,"abstract":"Glass-filled composites are used for overmolding of electrical components due to their good electrical isolation properties. Laser cutting is a preferred technology to remove excess mold material to achieve a low surface roughness and reduce tool wear. Hatching strategies improve the laser-cutting process of carbon fiber-reinforced polymers toward lower cutting times and a more homogeneous cut surface. The impact of hatching strategies on epoxy mold compounds has been so far unknown as the laser-cutting strategy was based on multiple single passes in previous studies. This work investigates the effects of hatching strategies such as perpendicular hatching, parallel hatching, and a single line, including the influence of material thickness and filler content regarding the cutting time, kerf taper angle, and heat-affected zone, using a 50 W short-pulsed fiber laser for different highly filled epoxy mold compounds. Results show that the use of a hatching strategy is required to cut workpieces at thicknesses of 4 mm or higher due to the sieving size of the filler. Perpendicular hatching needs to be chosen when the aim is a minimal cutting time. The kerf taper angle at the top of the cut is below 4° while hatching leads to a more pronounced kink of up to 25° occurring toward the bottom of the cut. Meanwhile, an increase in filler concentration leads to an increase in cutting time, because of higher thermal conduction, while no effect on the kerf taper angle or the heat-affected zone can be identified.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"24 20","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001137","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glass-filled composites are used for overmolding of electrical components due to their good electrical isolation properties. Laser cutting is a preferred technology to remove excess mold material to achieve a low surface roughness and reduce tool wear. Hatching strategies improve the laser-cutting process of carbon fiber-reinforced polymers toward lower cutting times and a more homogeneous cut surface. The impact of hatching strategies on epoxy mold compounds has been so far unknown as the laser-cutting strategy was based on multiple single passes in previous studies. This work investigates the effects of hatching strategies such as perpendicular hatching, parallel hatching, and a single line, including the influence of material thickness and filler content regarding the cutting time, kerf taper angle, and heat-affected zone, using a 50 W short-pulsed fiber laser for different highly filled epoxy mold compounds. Results show that the use of a hatching strategy is required to cut workpieces at thicknesses of 4 mm or higher due to the sieving size of the filler. Perpendicular hatching needs to be chosen when the aim is a minimal cutting time. The kerf taper angle at the top of the cut is below 4° while hatching leads to a more pronounced kink of up to 25° occurring toward the bottom of the cut. Meanwhile, an increase in filler concentration leads to an increase in cutting time, because of higher thermal conduction, while no effect on the kerf taper angle or the heat-affected zone can be identified.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.