{"title":"Deep Learning Based Hybrid Analysis of Malware Detection and Classification: A Recent Review","authors":"Syed Shuja Hussain, M. Razak, Ahmad Firdaus","doi":"10.13052/jcsm2245-1439.1314","DOIUrl":null,"url":null,"abstract":"Globally extensive digital revolutions involved with every process related to human progress can easily create the critical issues in security aspects. This is promoted due to the important factors like financial crises and geographical connectivity in worse condition of the nations. By this fact, the authors are well motivated to present a precise literature on malware detection with deep learning approach. In this literature, the basic overview includes the nature of nature of malware detection i.e., static, dynamic, and hybrid approach. Another major component of this articles is the investigation of the backgrounds from recently published and highly cited state-of-the-arts on malware detection, prevention and prediction with deep learning frameworks. The technologies engaged in providing solutions are utilized from AI based frameworks like machine learning, deep learning, and hybrid frameworks. The main motivations to produce this article is to portrait clear pictures of the option challenging issues and corresponding solution for developing robust malware-free devices. In the lack of a robust malware-free devices, highly growing geographical and financial disputes at wide globes can be extensively provoked by malicious groups. Therefore, exceptionally high demand of the malware detection devices requires a very strong recommendation to ensure the security of a nation. In terms preventing and recovery, Zero-day threats can be handled by recent methodology used in deep learning. In the conclusion, we also explored and investigated the future patterns of malware and how deals with in upcoming years. Such review may extend towards the development of IoT based applications used many fields such as medical devices, home appliances, academic systems.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"53 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Globally extensive digital revolutions involved with every process related to human progress can easily create the critical issues in security aspects. This is promoted due to the important factors like financial crises and geographical connectivity in worse condition of the nations. By this fact, the authors are well motivated to present a precise literature on malware detection with deep learning approach. In this literature, the basic overview includes the nature of nature of malware detection i.e., static, dynamic, and hybrid approach. Another major component of this articles is the investigation of the backgrounds from recently published and highly cited state-of-the-arts on malware detection, prevention and prediction with deep learning frameworks. The technologies engaged in providing solutions are utilized from AI based frameworks like machine learning, deep learning, and hybrid frameworks. The main motivations to produce this article is to portrait clear pictures of the option challenging issues and corresponding solution for developing robust malware-free devices. In the lack of a robust malware-free devices, highly growing geographical and financial disputes at wide globes can be extensively provoked by malicious groups. Therefore, exceptionally high demand of the malware detection devices requires a very strong recommendation to ensure the security of a nation. In terms preventing and recovery, Zero-day threats can be handled by recent methodology used in deep learning. In the conclusion, we also explored and investigated the future patterns of malware and how deals with in upcoming years. Such review may extend towards the development of IoT based applications used many fields such as medical devices, home appliances, academic systems.
期刊介绍:
Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.