Analytical quasibound states of black holes emerging from modified theories of gravity

IF 1.5 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
David Senjaya
{"title":"Analytical quasibound states of black holes emerging from modified theories of gravity","authors":"David Senjaya","doi":"10.1142/s0217732323501602","DOIUrl":null,"url":null,"abstract":"The Rayleigh–Schrodinger method or more commonly called time independent perturbation theory is a powerful method to solve a Hamiltonian system with a relatively small perturbation [W. Nolting, Theoretical Physics 7: Quantum Mechanics–Methods and Applications (Springer International, 2017); F. Schwabl, Quantum Mechanics, 4th edn. (Springer, 2007)]. In this work, we make use of the Rayleigh–Schrodinger method to formulate a general method to calculate quasibound states of static spherically symmetric black hole solutions arising from modified theories of gravity. We discover that the Schwarzschild-like term corresponds to the main Hamiltonian while the modified theory of gravity’s contribution of the spacetime metric corresponds to the perturbation terms. At the end, formula to calculate main Hamiltonian and perturbed Hamiltonian are discovered and presented.","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"54 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217732323501602","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Rayleigh–Schrodinger method or more commonly called time independent perturbation theory is a powerful method to solve a Hamiltonian system with a relatively small perturbation [W. Nolting, Theoretical Physics 7: Quantum Mechanics–Methods and Applications (Springer International, 2017); F. Schwabl, Quantum Mechanics, 4th edn. (Springer, 2007)]. In this work, we make use of the Rayleigh–Schrodinger method to formulate a general method to calculate quasibound states of static spherically symmetric black hole solutions arising from modified theories of gravity. We discover that the Schwarzschild-like term corresponds to the main Hamiltonian while the modified theory of gravity’s contribution of the spacetime metric corresponds to the perturbation terms. At the end, formula to calculate main Hamiltonian and perturbed Hamiltonian are discovered and presented.
修正引力理论中出现的黑洞解析准结合态
雷利-薛定谔方法或通常所说的时间无关扰动理论是求解具有相对较小扰动的哈密顿系统的一种强有力的方法[W.Nolting, Theoretical Physics 7: Quantum Mechanics-Methods and Applications (Springer International, 2017); F. Schwabl, Quantum Mechanics, 4th edn. (Springer, 2007)]。(Springer, 2007)]。在这项工作中,我们利用瑞利-薛定谔方法,提出了一种计算修正引力理论产生的静态球对称黑洞解的准边界态的一般方法。我们发现,类似于施瓦兹希尔德的项对应于主哈密顿,而修正引力理论的时空度量贡献则对应于扰动项。最后,我们发现并提出了主哈密顿和扰动哈密顿的计算公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Physics Letters A
Modern Physics Letters A 物理-物理:核物理
CiteScore
3.10
自引率
7.10%
发文量
186
审稿时长
3 months
期刊介绍: This letters journal, launched in 1986, consists of research papers covering current research developments in Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator physics, and Quantum Information. A Brief Review section has also been initiated with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信