Long-time behavior of nonclassical diffusion equations with memory on time-dependent spaces

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Jiangwei Zhang, Zhe Xie, Yongqin Xie
{"title":"Long-time behavior of nonclassical diffusion equations with memory on time-dependent spaces","authors":"Jiangwei Zhang, Zhe Xie, Yongqin Xie","doi":"10.3233/asy-231887","DOIUrl":null,"url":null,"abstract":"This paper aims to study the long-time behavior of nonclassical diffusion equation with memory and disturbance parameters on time-dependent space. By using the contractive process method on the family of time-dependent spaces and operator decomposition technique, the existence of pullback attractors is first proved. Then the upper semi-continuity of pullback attractors with respect to perturbation parameter ν in M t is obtained. It’s remarkable that the nonlinearity f satisfies the polynomial growth of arbitrary order.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"9 10","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231887","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to study the long-time behavior of nonclassical diffusion equation with memory and disturbance parameters on time-dependent space. By using the contractive process method on the family of time-dependent spaces and operator decomposition technique, the existence of pullback attractors is first proved. Then the upper semi-continuity of pullback attractors with respect to perturbation parameter ν in M t is obtained. It’s remarkable that the nonlinearity f satisfies the polynomial growth of arbitrary order.
时间相关空间上具有记忆的非经典扩散方程的长时行为
本文旨在研究时间依赖空间上具有记忆和扰动参数的非经典扩散方程的长期行为。通过使用时间依赖空间族上的收缩过程方法和算子分解技术,首先证明了回拉吸引子的存在性。然后得到了回拉吸引子在 M t 中关于扰动参数 ν 的上半连续性。值得注意的是,非线性 f 满足任意阶的多项式增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信