Yuanjing Wang, Pengxuan Lei, Binbin Lv, Yuchen Li, H. Guo
{"title":"Study on Fluid–Structure Interaction of a Camber Morphing Wing","authors":"Yuanjing Wang, Pengxuan Lei, Binbin Lv, Yuchen Li, H. Guo","doi":"10.3390/vibration6040062","DOIUrl":null,"url":null,"abstract":"The influence of trailing edge deformation on the aerodynamic characteristics of camber morphing wings is an important topic in the aviation field. In this paper, a new memory alloy actuator is proposed to realize trailing edge deformation, and computational fluid dynamics (CFD) and wind tunnel experiments are used to study the influence of trailing edge deformation on the aerodynamic characteristics of the camber morphing wings. The experiments was carried out in a transonic wind tunnel with Mach numbers ranging from 0.4 to 0.8 and angles of attack ranging from 0° to 6°. The external flow fields and aerodynamic force coefficients with and without deformation were calculated using the CFD method. A loose coupled method based on data exchange was used to achieve a fluid–structure interaction (FSI) analysis. The research results indicate that when the trailing edge is deflected downwards, the phenomenon of shock wave forward movement reduces the negative pressure area on the upper wing surface, increases the pressure on the lower wing surface, and ultimately increases the total lift. This work provides a new approach for the implementation of trailing edge deformation and a powerful data reference for the design of camber morphing wings.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"4 8","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6040062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of trailing edge deformation on the aerodynamic characteristics of camber morphing wings is an important topic in the aviation field. In this paper, a new memory alloy actuator is proposed to realize trailing edge deformation, and computational fluid dynamics (CFD) and wind tunnel experiments are used to study the influence of trailing edge deformation on the aerodynamic characteristics of the camber morphing wings. The experiments was carried out in a transonic wind tunnel with Mach numbers ranging from 0.4 to 0.8 and angles of attack ranging from 0° to 6°. The external flow fields and aerodynamic force coefficients with and without deformation were calculated using the CFD method. A loose coupled method based on data exchange was used to achieve a fluid–structure interaction (FSI) analysis. The research results indicate that when the trailing edge is deflected downwards, the phenomenon of shock wave forward movement reduces the negative pressure area on the upper wing surface, increases the pressure on the lower wing surface, and ultimately increases the total lift. This work provides a new approach for the implementation of trailing edge deformation and a powerful data reference for the design of camber morphing wings.