Predicting Pedestrian Trajectories with Deep Adversarial Networks Considering Motion and Spatial Information

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2023-12-12 DOI:10.3390/a16120566
Liming Lao, Dangkui Du, Pengzhan Chen
{"title":"Predicting Pedestrian Trajectories with Deep Adversarial Networks Considering Motion and Spatial Information","authors":"Liming Lao, Dangkui Du, Pengzhan Chen","doi":"10.3390/a16120566","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel prediction model termed the social and spatial attentive generative adversarial network (SSA-GAN). The SSA-GAN framework utilizes a generative approach, where the generator employs social attention mechanisms to accurately model social interactions among pedestrians. Unlike previous methodologies, our model utilizes comprehensive motion features as query vectors, significantly enhancing predictive performance. Additionally, spatial attention is integrated to encapsulate the interactions between pedestrians and their spatial context through semantic spatial features. Moreover, we present a novel approach for generating simulated multi-trajectory datasets using the CARLA simulator. This method circumvents the limitations inherent in existing public datasets such as UCY and ETH, particularly when evaluating multi-trajectory metrics. Our experimental findings substantiate the efficacy of the proposed SSA-GAN model in capturing the nuances of pedestrian interactions and providing accurate multimodal trajectory predictions.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"24 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16120566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel prediction model termed the social and spatial attentive generative adversarial network (SSA-GAN). The SSA-GAN framework utilizes a generative approach, where the generator employs social attention mechanisms to accurately model social interactions among pedestrians. Unlike previous methodologies, our model utilizes comprehensive motion features as query vectors, significantly enhancing predictive performance. Additionally, spatial attention is integrated to encapsulate the interactions between pedestrians and their spatial context through semantic spatial features. Moreover, we present a novel approach for generating simulated multi-trajectory datasets using the CARLA simulator. This method circumvents the limitations inherent in existing public datasets such as UCY and ETH, particularly when evaluating multi-trajectory metrics. Our experimental findings substantiate the efficacy of the proposed SSA-GAN model in capturing the nuances of pedestrian interactions and providing accurate multimodal trajectory predictions.
利用考虑运动和空间信息的深度对抗网络预测行人轨迹
本文提出了一种新颖的预测模型,称为社会和空间注意力生成对抗网络(SSA-GAN)。SSA-GAN 框架采用生成式方法,生成器利用社会关注机制来准确模拟行人之间的社会互动。与以往的方法不同,我们的模型利用综合运动特征作为查询向量,大大提高了预测性能。此外,我们还整合了空间注意力,通过语义空间特征来概括行人之间的互动及其空间环境。此外,我们还提出了一种利用 CARLA 模拟器生成模拟多轨迹数据集的新方法。这种方法规避了 UCY 和 ETH 等现有公共数据集固有的局限性,尤其是在评估多轨迹指标时。我们的实验结果证明了所提出的 SSA-GAN 模型在捕捉行人互动的细微差别和提供准确的多模态轨迹预测方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信