Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY
Batteries Pub Date : 2023-12-12 DOI:10.3390/batteries9120588
Alexander Mirandona-Olaeta, E. Goikolea, Senen Lanceros-Mendez, A. Fidalgo-Marijuan, Idoia Ruiz de Larramendi
{"title":"Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries","authors":"Alexander Mirandona-Olaeta, E. Goikolea, Senen Lanceros-Mendez, A. Fidalgo-Marijuan, Idoia Ruiz de Larramendi","doi":"10.3390/batteries9120588","DOIUrl":null,"url":null,"abstract":"Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10−4 S cm−1 at room temperature, in addition to an acceptable Na+ transference number. Furthermore, the developed Na[EMIm][TFSI]@Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na+/Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"45 145","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries9120588","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium batteries are receiving increasing interest as an alternative to reduce dependence on lithium-based systems. Furthermore, the development of solid-state electrolytes will lead to higher-performing and safer devices. In this work, a Zn-based metal–organic framework (Zn-MOF-74) is combined as a physical barrier against the growth of dendrites, together with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid, which provides improved mobility to sodium ions. It is demonstrated that the incorporation of the appropriate amount of ionic liquid within the pores of the MOF produces a considerable increase in ionic conductivity, achieving values as high as 5 × 10−4 S cm−1 at room temperature, in addition to an acceptable Na+ transference number. Furthermore, the developed Na[EMIm][TFSI]@Zn-MOF-74 hybrid solid electrolyte contributes to stable and dendrite-free sodium plating/stripping for more than 100 h. Finally, a more than notable extension of the electrochemical stability window of the electrolyte has been determined, being useful even above 7 V vs. Na+/Na. Overall, this work presents a suitable strategy for the next generation of solid-state sodium batteries.
基于离子液体添加剂 Zn-MOF-74 的钠电池固态电解质
钠电池作为减少对锂电池系统依赖的替代品,正受到越来越多的关注。此外,固态电解质的开发将带来性能更高、更安全的设备。在这项研究中,锌基金属有机框架(Zn-MOF-74)与 1-乙基-3-甲基咪唑鎓双(三氟甲基磺酰基)亚胺([EMIm][TFSI])离子液体相结合,作为防止树枝状突起生长的物理屏障,从而提高了钠离子的迁移率。研究表明,在 MOF 的孔隙中加入适量的离子液体可显著提高离子电导率,在室温下离子电导率可高达 5 × 10-4 S cm-1,此外 Na+ 的转移数也在可接受的范围内。此外,所开发的 Na[EMIm][TFSI]@Zn-MOF-74 混合固体电解质还能在 100 多小时内稳定地进行无树枝状突起的钠电镀/剥离。总之,这项工作为下一代固态钠电池提供了一种合适的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信