Junjie Li, Shengli Du, Jianfeng Liu, Weibiao Chen, Manfu Tang, Lei Zheng, Lianfa Wang, Chunle Ji, Xiao Yu, Wanli Yu
{"title":"Language guided 3D object detection in point clouds for MEP scenes","authors":"Junjie Li, Shengli Du, Jianfeng Liu, Weibiao Chen, Manfu Tang, Lei Zheng, Lianfa Wang, Chunle Ji, Xiao Yu, Wanli Yu","doi":"10.1049/cvi2.12261","DOIUrl":null,"url":null,"abstract":"<p>In recent years, contrastive language-image pre-training (CLIP) has gained popularity for processing 2D data. However, the application of cross-modal transferable learning to 3D data remains a relatively unexplored area. In addition, high-quality, labelled point cloud data for Mechanical, Electrical, and Plumbing (MEP) scenarios are in short supply. To address this issue, the authors introduce a novel object detection system that employs 3D point clouds and 2D camera images, as well as text descriptions as input, using image-text matching knowledge to guide dense detection models for 3D point clouds in MEP environments. Specifically, the authors put forth the proposition of a language-guided point cloud modelling (PCM) module, which leverages the shared image weights inherent in the CLIP backbone. This is done with the aim of generating pertinent category information for the target, thereby augmenting the efficacy of 3D point cloud target detection. After sufficient experiments, the proposed point cloud detection system with the PCM module is proven to have a comparable performance with current state-of-the-art networks. The approach has 5.64% and 2.9% improvement in KITTI and SUN-RGBD, respectively. In addition, the same good detection results are obtained in their proposed MEP scene dataset.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 4","pages":"526-539"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12261","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12261","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, contrastive language-image pre-training (CLIP) has gained popularity for processing 2D data. However, the application of cross-modal transferable learning to 3D data remains a relatively unexplored area. In addition, high-quality, labelled point cloud data for Mechanical, Electrical, and Plumbing (MEP) scenarios are in short supply. To address this issue, the authors introduce a novel object detection system that employs 3D point clouds and 2D camera images, as well as text descriptions as input, using image-text matching knowledge to guide dense detection models for 3D point clouds in MEP environments. Specifically, the authors put forth the proposition of a language-guided point cloud modelling (PCM) module, which leverages the shared image weights inherent in the CLIP backbone. This is done with the aim of generating pertinent category information for the target, thereby augmenting the efficacy of 3D point cloud target detection. After sufficient experiments, the proposed point cloud detection system with the PCM module is proven to have a comparable performance with current state-of-the-art networks. The approach has 5.64% and 2.9% improvement in KITTI and SUN-RGBD, respectively. In addition, the same good detection results are obtained in their proposed MEP scene dataset.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf