M. D. Manfrinato, Luciana Sgarbi Rossino, A. Kliauga, O. Florêncio
{"title":"Mechanical Properties of Indentation in Plasma Nitrided and Nitrocarburized Austenitic Stainless Steel AISI 321","authors":"M. D. Manfrinato, Luciana Sgarbi Rossino, A. Kliauga, O. Florêncio","doi":"10.4028/p-45tuLi","DOIUrl":null,"url":null,"abstract":"Austenitic stainless steels are widely used due to their resistance to corrosion and to the possibility of using them at temperatures above 600 °C. Plasma nitriding and nitrocarburizing consist of a thermochemical process that introduces nitrogen and nitrogen/carbon, in atomic form, allowing the formation of second phases of these elements with the substrate. These thermochemical treatments of plasma nitriding and nitrocarburizing were performed on austenitic stainless steel AISI 312 at temperatures of 400 °C and 500 °C, obtaining thicknesses of around 12 μm and 24 μm, respectively. Mechanical properties of indentation were obtained using a Hit 300 nanoindenter (Anton Paar), in a load-unload cycle and with a depth of up to 10% of the layer, with Berkovich indenter. The elastic moduli obtained for the nitrided layers were 281 ± 21 GPa (400 °C) and 163 ± 32 GPa (500 °C) and for the nitrocarburized were 214 ± 12 GPa (400 °C) and 169 ± 25 GPa (500 °C). The indentation nanohardness obtained for the nitrided layers were 14.1 ± 1.0 GPa (400 °C) and 3.5 ± 1.2 GPa (500 °C) and for the nitrocarburized layers were 10.8 ± 0.8 GPa (400 °C) and 4.3 ± 1.2 GPa (500 °C). Therefore, these results indicate slightly higher values for the two mechanical properties indentation (elastic modulus and nanohardness) at 400 °C than at 500 °C caused by nitriding compared to nitrocarburizing treatment; however, when considering the percentages of standard deviations, the treatments at 500 °C present much higher values for these properties, as compared to the treatments at 400 °C, a behavior associated with the presence of chromium and iron nitrides.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-45tuLi","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Austenitic stainless steels are widely used due to their resistance to corrosion and to the possibility of using them at temperatures above 600 °C. Plasma nitriding and nitrocarburizing consist of a thermochemical process that introduces nitrogen and nitrogen/carbon, in atomic form, allowing the formation of second phases of these elements with the substrate. These thermochemical treatments of plasma nitriding and nitrocarburizing were performed on austenitic stainless steel AISI 312 at temperatures of 400 °C and 500 °C, obtaining thicknesses of around 12 μm and 24 μm, respectively. Mechanical properties of indentation were obtained using a Hit 300 nanoindenter (Anton Paar), in a load-unload cycle and with a depth of up to 10% of the layer, with Berkovich indenter. The elastic moduli obtained for the nitrided layers were 281 ± 21 GPa (400 °C) and 163 ± 32 GPa (500 °C) and for the nitrocarburized were 214 ± 12 GPa (400 °C) and 169 ± 25 GPa (500 °C). The indentation nanohardness obtained for the nitrided layers were 14.1 ± 1.0 GPa (400 °C) and 3.5 ± 1.2 GPa (500 °C) and for the nitrocarburized layers were 10.8 ± 0.8 GPa (400 °C) and 4.3 ± 1.2 GPa (500 °C). Therefore, these results indicate slightly higher values for the two mechanical properties indentation (elastic modulus and nanohardness) at 400 °C than at 500 °C caused by nitriding compared to nitrocarburizing treatment; however, when considering the percentages of standard deviations, the treatments at 500 °C present much higher values for these properties, as compared to the treatments at 400 °C, a behavior associated with the presence of chromium and iron nitrides.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.