{"title":"A Knowledge-embedded Close-looped Deep Learning Framework for Intelligent Inversion of Multi-solution Problems","authors":"Fanchang Zhang, Lei Zhu, Xunyong Xu","doi":"10.1190/geo2023-0334.1","DOIUrl":null,"url":null,"abstract":"Deep learning is prevalent in many fields and attempts have been made to use it in non-bidirectional mapping problems, such as seismic inversion. These non-bidirectional mapping problems have two special issues, that is, insufficient labels and uncertainty of solution. Therefore, current deep learning structures are not suitable for handling this kind of problem. A distinctive knowledge embedded close-looped (KECL) deep learning framework is proposed, tuned to the characteristic of seismic inverse problem. The KECL deep learning framework is composed of a reservoir parameter generator (RPG) and a reservoir parameter updater (RPU). The former half loop is RPG, which takes seismic data as input to generate the initial reservoir parameters. The latter loop is RPU, which takes the initial parameters as input to output synthetic seismic data. Through the training by well data, the difference between field seismic data and synthetic seismic data modelled by the RPU is used to optimize the RPG and RPU. In this deep learning framework, knowledge of the Robinson convolutional model is embedded to address the problem of insufficient labels. Furthermore, semi-supervised learning is used as prior information to reduce the uncertainty of solution. After training, with the help of prior geological information data, the RPU is used to update the initial reservoir parameters generated by RPG for final reservoir parameter inversion. Numerical models and field data are used to test the feasibility of the proposed deep learning framework. We found that intelligent inversion results using data from one well to train the KECL network are consistent with results using multiple well data. Experiments demonstrate that it is adapted to situations in which insufficient well data are available and is able to achieve reliable intelligent inversion.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"180 S459","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0334.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning is prevalent in many fields and attempts have been made to use it in non-bidirectional mapping problems, such as seismic inversion. These non-bidirectional mapping problems have two special issues, that is, insufficient labels and uncertainty of solution. Therefore, current deep learning structures are not suitable for handling this kind of problem. A distinctive knowledge embedded close-looped (KECL) deep learning framework is proposed, tuned to the characteristic of seismic inverse problem. The KECL deep learning framework is composed of a reservoir parameter generator (RPG) and a reservoir parameter updater (RPU). The former half loop is RPG, which takes seismic data as input to generate the initial reservoir parameters. The latter loop is RPU, which takes the initial parameters as input to output synthetic seismic data. Through the training by well data, the difference between field seismic data and synthetic seismic data modelled by the RPU is used to optimize the RPG and RPU. In this deep learning framework, knowledge of the Robinson convolutional model is embedded to address the problem of insufficient labels. Furthermore, semi-supervised learning is used as prior information to reduce the uncertainty of solution. After training, with the help of prior geological information data, the RPU is used to update the initial reservoir parameters generated by RPG for final reservoir parameter inversion. Numerical models and field data are used to test the feasibility of the proposed deep learning framework. We found that intelligent inversion results using data from one well to train the KECL network are consistent with results using multiple well data. Experiments demonstrate that it is adapted to situations in which insufficient well data are available and is able to achieve reliable intelligent inversion.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.