{"title":"A Basic Set of Cancellation Violating Sequences for Finite Two-Dimensional Non-Additive Measurement","authors":"Che Tat Ng","doi":"10.2478/amsil-2023-0023","DOIUrl":null,"url":null,"abstract":"Abstract Cancellation conditions play a central role in the representation theory of measurement for a weak order on a finite two-dimensional Cartesian product set X. A weak order has an additive representation if and only if it violates no cancellation conditions. Given X, a longstanding open problem is to determine the simplest set of cancellation conditions that is violated by every linear order that is not additively representable. Here, we report that the simplest set of cancellation conditions on a 5 by 5 product X is obtained.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"253 6","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Cancellation conditions play a central role in the representation theory of measurement for a weak order on a finite two-dimensional Cartesian product set X. A weak order has an additive representation if and only if it violates no cancellation conditions. Given X, a longstanding open problem is to determine the simplest set of cancellation conditions that is violated by every linear order that is not additively representable. Here, we report that the simplest set of cancellation conditions on a 5 by 5 product X is obtained.