A Basic Set of Cancellation Violating Sequences for Finite Two-Dimensional Non-Additive Measurement

IF 0.4 Q4 MATHEMATICS
Che Tat Ng
{"title":"A Basic Set of Cancellation Violating Sequences for Finite Two-Dimensional Non-Additive Measurement","authors":"Che Tat Ng","doi":"10.2478/amsil-2023-0023","DOIUrl":null,"url":null,"abstract":"Abstract Cancellation conditions play a central role in the representation theory of measurement for a weak order on a finite two-dimensional Cartesian product set X. A weak order has an additive representation if and only if it violates no cancellation conditions. Given X, a longstanding open problem is to determine the simplest set of cancellation conditions that is violated by every linear order that is not additively representable. Here, we report that the simplest set of cancellation conditions on a 5 by 5 product X is obtained.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"253 6","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Cancellation conditions play a central role in the representation theory of measurement for a weak order on a finite two-dimensional Cartesian product set X. A weak order has an additive representation if and only if it violates no cancellation conditions. Given X, a longstanding open problem is to determine the simplest set of cancellation conditions that is violated by every linear order that is not additively representable. Here, we report that the simplest set of cancellation conditions on a 5 by 5 product X is obtained.
有限二维非加法测量的基本抵消违反序列集
摘要 取消条件在有限二维笛卡尔积集 X 上弱阶的测量表示理论中起着核心作用。当且仅当弱阶不违反取消条件时,它才具有可加表示性。给定 X,一个长期悬而未决的问题是确定每一个不可加表示的线性阶都违反的最简单的取消条件集。在此,我们报告了关于 5 乘 5 积 X 的最简单的取消条件集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信