{"title":"A Parallel Connected Hybrid Microstrip-Substrate Integrated Waveguide Bandstop Filter","authors":"Kemal Guvenli, S. Yenikaya, Mustafa Secmen","doi":"10.5755/j02.eie.31628","DOIUrl":null,"url":null,"abstract":"This study presents an original parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter. A low-pass filter implemented on a microstrip structure and a SIW-based high-pass filter are connected in parallel to each other. In this way, the aim is to obtain a bandstop filter in the novel hybrid design. The parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter is synthesised, simulated, and produced. The effects of connecting filters in parallel are discussed. It is seen from the results of CST Studio Suite simulation that PCHM-SIW bandstop filter has a bandwidth of 2.85 GHz and a center frequency of 4.26 GHz. The frequency change rate of the center frequency between simulation and measurement is 7.02 % where it is just 3.76 % for the deviation in bandwidth. The results of the simulation and those of the measurement are close to each other. These results converge to ideal analytical results.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":"49 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31628","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an original parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter. A low-pass filter implemented on a microstrip structure and a SIW-based high-pass filter are connected in parallel to each other. In this way, the aim is to obtain a bandstop filter in the novel hybrid design. The parallel connected hybrid microstrip-substrate integrated waveguide (PCHM-SIW) bandstop filter is synthesised, simulated, and produced. The effects of connecting filters in parallel are discussed. It is seen from the results of CST Studio Suite simulation that PCHM-SIW bandstop filter has a bandwidth of 2.85 GHz and a center frequency of 4.26 GHz. The frequency change rate of the center frequency between simulation and measurement is 7.02 % where it is just 3.76 % for the deviation in bandwidth. The results of the simulation and those of the measurement are close to each other. These results converge to ideal analytical results.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.